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Dietary carotenoids have been shown to confer immunological benefits to some species of animals in which males also
use these pigments to attract mates. Thus, the potential exists for an allocation trade-off between the sexual and
immunological functions of carotenoids. Food availability may also influence immune system function. The present
study examined the effects of carotenoid and food availability on the resistance of male guppies (Poecilia reticulata
Peters) from four wild populations to the parasite Gyrodactylus turnbulli Harris. Intermediate levels of carotenoid
ingestion resulted in the lowest parasite loads, which suggests that carotenoids strengthen parasite resistance at low
levels but either benefit parasites or suppress host immunity at high levels. Males raised on the high-food level ini-
tially had fewer parasites, suggesting heightened innate immunity relative to males raised on the low-food level.
Over the course of the experiment, however, the high-food males supported higher parasite population growth rates
than the low-food males. The results obtained emphasize the importance of evaluating the effects of diet on multiple
aspects of immune system function, and caution against assuming that positive effects of carotenoids on immunity
in one context will automatically translate to other contexts. © 2006 The Linnean Society of London, Biological
Journal of the Linnean Society, 2006, 89, 301-309.
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INTRODUCTION

In many species of fish and birds, males produce bril-
liant carotenoid-based skin and feather colours to
attract females (Olson & Owens, 1998; Mgller et al.,
2000). Evidence is mounting that carotenoids are
important immuno-stimulating agents in these species
(Blount et al., 2003; McGraw & Ardia, 2003; Grether
et al.,2004). Carotenoids cannot be synthesized by ani-
mals, and must be obtained from the diet (Goodwin,
1984); therefore, males may face a trade-off between
allocating carotenoids to sexual displays vs. combating
parasite infection (Lozano, 1994). The immune
response to parasite infection is also energetically
costly because it diverts resources from other fitness-
enhancing activities, such as reproduction, and is
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therefore expected to be influenced by host energy
intake (Munger & Karasov, 1989; Siva-Jothy & Thomp-
son, 2002). To our knowledge, the relative effects of car-
otenoid and food intake on parasite resistance have not
previously been examined in any species.

Male guppies display carotenoid-based sexual color-
ation that is absent in females (Hudon, Grether, & Mil-
lie, 2003) and female preference for high-carotenoid
males is well established (Kodric-Brown, 1989; Houde,
1997; Grether, 2000). Guppies have also been the sub-
ject of intensive studies of parasitism (Scott & Ander-
son, 1984; Kennedy et al., 1987; Houde & Torio, 1992;
Richards & Chubb, 1996) and, to a more limited
extent, the link between carotenoids and immunity
(Lépez, 1998; Grether et al., 2004). Guppies obtain car-
otenoids primarily from attached unicellular algae,
which is also the main food source for these fish
(Dussault & Kramer, 1981). Algae availability limits
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carotenoid deposition in the orange spots of male gup-
pies in the wild (Grether, Hudon & Millie, 1999) and
has also been shown to influence growth rates, life his-
tory traits, and behaviour (Grether et al., 2001;
Reznick, Butler, & Rodd, 2001; Kolluru & Grether,
2005). Dietary carotenoids have been shown to
enhance the foreign tissue (allograft) rejection
response in male, but not female guppies, which sug-
gests that males face a trade-off between allocating
carotenoids to immune function vs. mate attraction
(Grether et al., 2004). Allografts are not, of course, an
immunological challenge that fish encounter in nature.
The primary objective of this study was to determine
whether carotenoid availability enhances the resis-
tance of guppies to an ectoparasite that they encounter
commonly in the wild, Gyrodactylus turnbulli.

Gyrodactylus species are monogenean trematodes
that infect a variety of fish (Harris & Lyles, 1992;
Bakke, Soleng & Harris, 1999; Bakke, Harris, &
Cable, 2002). These viviparous flatworms reproduce
directly on the skin (epidermis) with no intermediate
host, and transmission among host individuals is
either by direct contact between fish or via the water
column or substrate (Scott & Anderson, 1984; Soleng,
Jansen & Bakke, 1999). Under laboratory conditions,
the generation time is approximately 2 days and every
individual is born with a pregnant embryo in its
uterus; thus, parasite population growth rates can be
very high (Scott, 1982; Lyles, 1990). In the field,
infected guppies usually harbour one to five parasites,
but parasite loads greater than ten are sometimes
seen (Lyles, 1990; G. R. Kolluru & G. F. Grether
unpubl. data). Infected male guppies exhibit reduced
carotenoid coloration (Houde & Torio, 1992), courtship
display rate (Kennedy et al., 1987; Lépez, 1998), and
feeding activity (Van Oosterhout, Harris, & Cable,
2003). Intense infections can be fatal (Scott & Ander-
son, 1984; Lyles, 1990), but fish can combat Gyrodac-
tylus infection via substances in their skin mucus
(Harris, Soleng & Bakke, 1998; Jones, 2001; Bakke
et al., 2002; Holland & Lambris, 2002). Guppies
exhibit innate and acquired resistance to Gyrodacty-
lus (Richards & Chubb, 1996; Lépez, 1998). Acquired
resistance is heritable (Madhavi & Anderson, 1985;
Bakke et al., 1999), although environmental factors
such as immunosuppressive chemicals (Dalgaard,
Nielsen, & Buchmann, 2003) and stress (Harris,
Soleng & Bakke, 2000) can reduce resistance. Resis-
tance to Gyrodactylus also varies among host popula-
tions (Cable, Harris, & Bakke, 2000; Hedrick, Kim, &
Parker, 2001; Soleng & Bakke, 2001; Dalgaard et al.,
2003), including guppy populations in Trinidad
(Van Oosterhout et al., 2003).

To examine the long-term, developmental effects of
carotenoid and food availability on the resistance of
male guppies to Gyrodactylus turnbulli, and to test for

population differences in these effects, a common gar-
den experiment was conducted in which male guppies
from four sites in Trinidad were raised from birth on
two different food levels and three different dietary
carotenoid concentrations. The reason for manipulat-
ing life-long access to food and carotenoids, as opposed
to short-term access, was to simulate the conditions
that guppies from populations differing in resource
availability experience in nature (Grether et al., 2001;
Reznick et al., 2001). Because food availability and the
carotenoid concentration of the food were manipulated
independently, it was possible to distinguish between
the independent effects of these variables.

MATERIAL AND METHODS

STUDY POPULATIONS

We studied first-generation (G;) laboratory-reared
descendants of fish collected in 2000 from eight to ten
pools from each of four sites in the Northern Range of
Trinidad (for grid references, see below). All four sites
are classified as low predation’ sites because they con-
tain no fish predators of guppies except the weak pred-
ator Rivulus hartii (Houde, 1997). To maximize the
genetic diversity of fish used in the experiment, off-
spring were obtained from approximately 120 (25-35
per population) wild females. This represents a poten-
tially much larger number of sires, because females
mate multiply in the wild and can store sperm for up
to 8 months (Winge, 1937). The sites occur in intact
primary or old secondary growth rainforest, with rel-
atively homogeneous forest canopy cover within each
site, and are separated from sites differing in predator
assemblage by multiple barriers to guppy dispersal,
including two or more waterfalls (Grether et al., 2001).
One stream was chosen with relatively low canopy
openness, and another with relatively high canopy
openness, in each of two phylogenetically distinct river
drainages. This sampling design helps control for phy-
logenetic effects to the extent that populations within
one drainage are closer to each other genetically than
populations in different drainages, as would be
expected from the dispersal mode of these fish. Previ-
ous work has shown that, in streams with lower can-
opy openness, guppies ingest algae at lower rates and
males have less carotenoid pigments in their orange
spots (Grether et al., 1999, 2001). The names, resource
availability levels, and GPS co-ordinates (Universal
Transverse Mercator Grid, Zone 20) of the sites are:
Aqui River (high resource; PS 939 887) and a tributary
of the Madamas River (low resource; PS 950 880) in
the upper Madamas drainage; Small Crayfish River
(high resource; PS 965 835) and Large Crayfish River
(low resource; PS 965 832) in the upper Quare
drainage.
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FOOD LEVEL AND CAROTENOID DIET MANIPULATION

The laboratory populations were housed at the Uni-
versity of California, Los Angeles campus, in a
temperature-controlled (24.0 + 1.5 °C water tempera-
ture) room under a 12 : 12 h photoperiod (mixed day-
light spectrum fluorescent and incandescent light). To
prevent the fish from eating algae, the water was
treated with 2-chloro-4,6-bis-(ethylamino)-s-triazine
(Algae Destroyer, Aquarium Pharmaceuticals), and
visible algae was removed regularly. Wild-caught
females were individually housed in 8-litre tanks, fed
a standard diet of commercial flake food (Tetramin
and Tetra Spirulina) twice per day (once per day on
weekends) and allowed to give birth.

G, offspring were randomly assigned at birth to
either the low- or high-food level treatment, and to
either the trace, low- or high-carotenoid diet treat-
ment. Prior to sexing, the fish were housed in 8-litre
tanks in mixed-sex broods at densities of one to six fish
per tank. Each tank potentially contained offspring
from multiple females, but offspring did not vary in
age by more than 14 days. Fish were sexed under a
dissecting microscope well before sexual maturity, at
either 13-15 weeks of age (low food) or 10-12 weeks of
age (high food), when sedated with MS-222. Black pig-
ment spots near the gonopore (females) and skin iri-
descence or the beginnings of gonopodial development
in the anal fin (males) were identified. After sexing,
males were housed at densities of one to four males
per tank, with one companion female to allow mating.
From 4 weeks before the start of the experiment until
the completion, all males were maintained at densi-
ties of four fish per tank (three males and one com-
panion female). To avoid accidental differences in age
among treatment groups, the range of ages of the
three males in each housing tank were maximized
(mean £ SE age range per tank: 405 = 11 days). The
experiment involved 174 infected males and 152 con-
trol males. Prior to being moved into the experimental
tanks, the unique colour pattern of each male was
sketched to identify the three males in each tank.

The fish were fed twice daily (once daily on week-
ends) using a specially designed feeding device that
delivered precise quantities of finely ground flake food
to each tank. Within each food level treatment, food
amounts were adjusted to the age and density of fish
in the tank. The high-food level was approximately as
much as guppies of a given age are willing to eat on
the feeding schedule described above (based on the
presence of uneaten food in the tanks in pilot studies),
and the low-food level was one-third of that amount.
As the fish aged, food amounts were augmented
weekly by 10.8% (high-food treatment) and 12.6%
(low-food treatment), over the first 20 weeks. Because
male guppies essentially stop growing after reaching

sexual maturity (Snelson, 1989), food levels were not
increased after 20 weeks of age.

The carotenoid diets (trace, low and high) were
designed to contain different concentrations of the car-
otenoid pigments found in the natural diets of guppies,
but otherwise were identical. The basal (trace-caro-
tenoid) diet comprised spray-dried white fish meal
(41.8%), wheat flour (47.0%), vegetable oil (2.0%), vita-
min premix (1.0%), and gelatine (8.1%). The estimated
protein (40%) and fat content (10%) of this diet are
similar to high-quality commercial fish feeds for trop-
ical fish. The vitamin premix included vitamin A palm-
inate, but no carotenoids. Lutein and B-carotene in
gelatine beadlet form were added to the low- and high-
carotenoid diets (Roche Vitamins Inc.); the amount of
pure gelatine added to these diets was adjusted to
keep protein content constant across diets. Based on
high-performance liquid chromatography (HPLC)
analyses of diet samples, the mean composition of the
low-carotenoid diet was 2.85 pug g lutein, 0.21 pg g*
zeaxanthin, and 1.99 ug g B-carotene (5.05 ug g™
total carotenoids), and the mean composition of the
high-carotenoid diet was 745.57 ugg' lutein,
71.43 ug g zeaxanthin, and 522.30 ug g! B-carotene
(1339.30 ug g total carotenoids; D. F. Millie, pers.
comm.). The total carotenoid content of the trace car-
otenoid diet was negligible (< 0.2 ug g%), but the fish
apparently obtained small amounts of carotenoids
from algae, despite efforts to eliminate algae growth
(see Results). By design, the carotenoid content of the
high-carotenoid diet was similar to what guppies could
obtain by consuming pure unicellular algae, whereas
the carotenoid contents of the trace- and low-caro-
tenoid diets were well below this range. For example,
green algae (Chlorophyta) is in the range 250-
2280 ug g* lutein, 50-1020 ug g zeaxanthin, and
260-820 ug g B-carotene (for these and other algal
carotenoid content data, see Goodwin, 1980: chapter
7). The carotenoid diets were custom made and
donated by Ocean Star International, Inc (Bur-
lingame, CA).

PIGMENT ANALYSES

To evaluate how the experimental diets compared to
the diets of guppies in the wild in terms of the
amounts of carotenoids actually deposited in the skin
of the fish, the total skin carotenoid content of 72
males raised on the experimental diets (these males
were not infected with G. turnbulli) was quantified.
The total skin carotenoid content of each male was
divided by body weight, to yield a body size-adjusted
measure of carotenoid content. Mean values for each
carotenoid diet group were compared with published
data on wild-caught fish from six sites in Trinidad
(Hudon et al., 2003).
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Prior to the pigment extractions, the fish were
sedated with MS-222, frozen instantly in liquid nitro-
gen and stored at —80 °C. To extract the pigments, the
skin was thawed at room temperature, peeled off the
body with surgical instruments, and allowed to dry for
a few minutes. Carotenoids were extracted with ace-
tone, transferred to a new vial, concentrated under a
flow of nitrogen to remove the acetone, and re-dissolved
in hexane. Absorption spectra of the hexane extracts
were measured with an Ocean Optics USB-2000 spec-
trometer equipped with a cuvette holder and a deute-
rium-tungsten light source (Ocean Optics DT-1000).

EXPERIMENTAL INFECTION

To establish a laboratory colony of Gyrodactylus, 60
infected fish were transported from each of two sites,
the Upper Quare drainage and the Paria River (a site
not included in this study, but known to harbour
G. turnbulli; Harris & Lyles, 1992), to the laboratory.
The parasite colony was maintained by housing
infected guppies at high densities (>40 fish per 40-
litre tank) and adding three to five uninfected fish
each week (Scott & Anderson, 1984; Lyles, 1990). The
parasite was identified as G. turnbulli by J. Cable
(Cardiff University School of Biosciences) based on 16
specimens from the parasite colony.

Experimental infection was carried out according to
previously established methods (Lyles, 1990). Donor
fish (with > 100 parasites) and recipient fish were
sedated and positioned so that the tail of the recipient
was lying on top of a heavily infected area on the
donor. Subsequently, there was a delay until three to
five parasites were seen to move from the donor to the
recipient, which usually happened within 10 s. This
range of parasite loads was allowed because it was dif-
ficult to transfer exactly four parasites per recipient.
Occasionally, five parasites moved onto the recipient
immediately, and it was impossible to remove them
once they attached to the recipient; at other times, it
took longer for parasites to move onto the recipient,
and waiting for more than three parasites to move
would have resulted in the fish and parasites being
sedated for too long (over-sedation can kill the para-
sites and the fish). Males in the control treatment
were sedated, sham-infected, and handled at the same
time as males in the experimental treatment. The
wild-caught donor fish may have harboured other par-
asites; however, no other parasites were observed
moving from hosts to recipients during the infection
process, and neither the fish nor the water from the
parasite colony came into contact with the experiment
fish at any other time.

The parasite load of each male was determined on
days 3 and 9 post infection, by sedating the fish and
counting the number and position of G. turnbulli

under a dissecting microscope at x18 magnification.
Control males were sedated and handled similarly.
None of the fish in the control tanks had parasites at
either of the two scoring dates. Several of the infected
fish had no parasites at either of the scoring dates, and
were excluded from analyses. On the day prior to
infection and on day 13 post infection, all males were
anaesthetized and weighed to the nearest 0.1 mg and
their standard length (the distance between the lower
jaw and the caudal peduncle) was measured using dig-
ital callipers with a 0.01 mm readout.

DATA ANALYSIS

Parasite load (a measure of parasite resistance) is
defined here as the number of parasites per infected
host individual. To evaluate the influence of site, food
level and carotenoid diet on parasite load, a repeated
measures analysis of variance (ANOVA) model was
constructed with parasite loads at 3 and 9 days post
infection as the dependent variables, time as the
repeated factor, and site, food level, and carotenoid
diet as nonrepeated fixed effects. This model also
included a random effects tank term nested within
site, carotenoid diet, and food level, to take into
account the common environment shared by males
within a tank. Initially, male age was included in the
model; however, there was no significant effect of age
on parasite loads (F 190 = 1.74, P = 0.19), and age was
therefore excluded. The rate of increase of parasite
load is a measure of the parasite population growth
rates on fish in the treatment groups (Lyles, 1990; Van
Oosterhout et al., 2003). To evaluate whether diet
influenced parasite population growth rates, interac-
tions between diet and time were examined.

Mass divided by the cube of standard length was
used as an index of condition; this is a standard iso-
metric condition index (Jones, Petrell & Pauly, 1999;
Grether, 2000), and the results were essentially the
same when an allometric index was used (data not
shown). Differences in male condition at the two scor-
ing dates were evaluated using ANOVA with parasite
treatment, site, carotenoid diet and food level as the
main effects. The four-way interactions in these mod-
els were not significant (both P >0.38) and were
excluded from the final models. All data were trans-
formed to meet parametric assumptions, and all anal-
yses were conducted using JMP 3.2.2 (SAS Institute,
Inc.), at an alpha level of 0.05.

RESULTS

DIET IN THE LABORATORY VERSUS THE FIELD

To evaluate how the food levels used in this experi-
ment compare to what guppies typically experience in
the field, the standard lengths at maturity of
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Figure 1. Standard lengths of mature male guppies from
field-caught and laboratory-reared samples. Bars show the
least squares mean + SE (except where the standard error
is too small to be shown).

laboratory-reared and field-caught males were com-
pared. On average, males raised on the high-food level
were significantly larger than wild-caught males from
low-resource streams (77, = 1.97, P = 0.005; Fig. 1) but
smaller than wild-caught males from high-resource
streams (¢146=1.98, P <0.0001). By contrast, males
raised on the low-food level were significantly smaller
than the wild-caught males from low-resource streams
(t196 = 1.97, P <0.0001); nevertheless, the ranges of
standard lengths in these two groups overlapped
broadly (low-food laboratory-reared: 11.03—16.11 mm,;
low-resource wild-caught: 12.67-19.28 mm). These
results suggest that the high-food level was in the
middle of the range that guppies typically experience
in the wild whereas the low-food level was on the low
end of the range.

Judging from the total carotenoid content of the
skin of males raised on the experimental diets, the
trace-carotenoid diet was substantially lower in caro-
tenoids (mean = SE: 4.61 +0.44 ng of carotenoids
per mg of body weight) than that encountered by
guppies in nature (range of six population means:
6.80-14.70 ng mg*; Hudon et al., 2003) whereas the
low- and high-carotenoid diets (8.04 +0.87 ng mg!
and 11.48 +1.18 ng mg !, respectively) were within
the natural range.

EFFECTS OF DIET AND SITE ON PARASITE LOADS

There was a significant difference in parasite loads
among the carotenoid diet groups (Table 1; Fig. 2).
Low-carotenoid males had the lowest parasite loads,
followed by trace-carotenoid males. The highest para-
site loads occurred in the high-carotenoid males.
Independent contrasts indicated that the parasite

1.4 4

1.3 4
5 121
]
=
211
g —e—Day 3
g 1 —+Day 9
b
)
- 0.9
0.8
0.7

trace low high

Carotenoid level

Figure 2. Parasite loads as a function of carotenoid intake
at 3 and 9 days post infection. Points indicate the least
squares mean *+ SE.

loads of males in the trace- and high-carotenoid
groups were indistinguishable from each other
(F1103=0.87, P =0.35), but that each differed signifi-
cantly from the low-carotenoid group (trace vs. low:
Fi103=4.93, P=0.029; low vs. high: F,;3=8.02,
P =0.006).

There was no significant difference in absolute par-
asite load between the low- and high-food level groups
(Table 1; Fig. 3A). At 3 days post infection, low-food
males had the highest parasite loads, but the effects of
food level were reversed by 9 days post infection, as
reflected by a significant time x food level interaction
(Table 1). In addition, mass-specific parasite loads
(parasite loads divided by the starting mass) were
examined. Qualitatively, these analyses yielded the
same results as those reported above, except that
there was a significant food level effect caused by the
greater mass-specific loads for low-food males at
3 days post infection (Fig. 3B). However, the difference
between the food groups disappeared by 9 days post
infection (Fig. 3B).

Parasite loads and the increase in parasite loads with
time varied with the site of origin of the fish (Table 1,
mean + SE number of parasites per fish 3 days post
infection: Madamas drainage high resource
0.82 £0.11, Madamas drainage low resource 1.00 £
0.08, Upper Quare drainage high resource 0.87 + 0.08,
Upper Quare drainage low resource 0.85 + 0.10;9 days:
Madamas drainage high resource 1.16 +0.13, Mad-
amas drainage low resource 1.23 + 0.12, Upper Quare
drainage high resource 1.21 +0.12, Upper Quare
drainage low resource 0.86 + 0.15). There were signifi-
cant differences among sites in the influence of caro-
tenoid diet on parasite loads (site x carotenoid diet
interaction; Table 1; Fig. 4).
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Table 1. Results of the repeated measures analysis of variance evaluating the effects of the nonrepeated factors site, food
level, and carotenoid diet, and the repeated factor time, on the parasite loads of male guppies

Effect

F(d.f) P

Between subjects effects
Tank (site, carotenoid diet, food level)
Site
Carotenoid diet
Food level
Site x carotenoid diet
Site x food level
Carotenoid diet x food level
Site x carotenoid diet x food level

Within subjects effects
Time
Time X site
Time X carotenoid diet
Time x food level
Time X site x carotenoid diet
Time X site x food level
Time x carotenoid diet x food level

4.15 (43, 103) <0.0001
4.69 (3, 103) 0.004
4.60 (2, 103) 0.012
0.0005 (1, 103) 0.98
5.65 (6, 103) <0.0001
2.12 (3, 103) 0.10
2.10 (2, 103) 0.13
2.09 (6, 103) 0.06
32.23 (1, 103) <0.0001
5.16 (3, 103) 0.002
1.61 (2, 103) 0.20
13.53 (1, 103) 0.0004
0.72 (6, 103) 0.64
0.73 (3, 103) 0.53
0.42 (2, 103) 0.66

The four-way interaction is not shown. d.f., degrees of freedom.

—o—low food —— high food
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Figure 3. Absolute (A) and mass-specific (B) parasite
loads of male guppies at 3 and 9 days post infection. Points
indicate the least squares mean * SE.

EFFECTS OF DIET AND PARASITE INFECTION
ON CONDITION

Experimentally infected males did not differ in condi-
tion from uninfected control males at 3 days post
infection (F27;=0.08, P=0.77), but were in poorer
condition by 9 days (Fi33=5.99, P=0.015). Males
from the four sites varied in condition at both scor-
ing times (3 days: F3s97;=6.39, P=0.0003; 9 days:
F53390=11.06, P < 0.0001), and males in the high-food
group were in better condition than males in the low-
food group (3 days: Fg9; =15.30, P=0.0001; 9 days:
F 330 =13.90, P = 0.0002). Carotenoid diet had no sig-
nificant influence on body condition (both P > 0.13).
There was a significant treatment x diet interaction at
day 9 (Fass9=4.54, P=0.011), because condition
increased linearly with carotenoid level for experi-
mentally infected males, but was highest at the inter-
mediate carotenoid level for control males. The other
terms in the models were not significant (P > 0.08).

DISCUSSION

The present common garden experiment revealed sig-
nificant effects of diet on the resistance of male gup-
pies to G. turnbulli. Carotenoid availability had a
nonlinear effect on resistance: parasite loads were
lowest in males raised on the diet containing an inter-
mediate concentration of carotenoids, whereas the
trace- and high-carotenoid diet groups were statisti-
cally indistinguishable from each other. Food avail-
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Figure 4. Parasite loads of male guppies infected with
Gyrodactylus as a function of site and carotenoid diet, at
3 days post infection (A) and 9 days post infection (B). Bars
show the least squares mean + SE.

ability had a positive effect on parasite loads at 3 days
post infection, suggesting that the innate immunity of
males raised on the high-food level was greater than
that of males raised on the low-food level. However,
this difference disappeared by 9 days post infection,
possibly because males raised on the high-food level,
who were in better condition, supported greater para-
site population growth rates than males raised on the
low-food level. Parasite resistance, and the effects of
carotenoids on resistance, varied among sites. Because
these fish were born and raised in the laboratory, the
site differences probably reflect genetic differences in
resistance and in the effects of carotenoid intake on
resistance. The present experimental design did not,
however, enable maternal effects to be ruled out.
Consistent with other studies demonstrating
immuno-stimulating properties of carotenoids (Mgller
et al., 2000; Blount et al., 2003; McGraw & Ardia,
2003; Grether etal., 2004), males in the trace-
carotenoid group had higher parasite loads than
males in the low-carotenoid group in the present
study. However, males in the high-carotenoid group
also had high parasite loads and, in some cases, the
highest parasite loads, which suggests that high con-
centrations of carotenoids may reduce parasite resis-
tance (note that the experimental diets contained the

same types of carotenoids as found in the algae of
Trinidad streams, and that the amount of carotenoids
in the high-carotenoid diet was within the natural
range for algae; see Materials and Methods). This
result contrasts with the previous finding that the
high-carotenoid diet used in the present study
enhances the foreign tissue rejection response in gup-
pies (Grether et al., 2004). The difference may result
because high levels of antioxidants, including caro-
tenoids, aid parasites more than they aid hosts (Horak
et al., 2004). Therefore, parasite resistance, unlike tis-
sue rejection, may be reduced under high levels of car-
otenoid ingestion. These results are analogous to those
showing both helpful and harmful effects of caro-
tenoids on human cancer (Omaye et al., 1997; Palozza
et al., 2003; Paolini et al., 2003), and highlight the
importance of studying a variety of carotenoid dosages
and experimental subjects when evaluating the poten-
tial health benefits of carotenoids. Whether high con-
centrations of carotenoids directly benefit parasites, or
whether they suppress the host immune system,
remains to be determined.

Males raised on the high-food level had lower initial
parasite loads than males raised on the low-food level,
suggesting that food intake has a positive effect on
the innate immune response to G. turnbulli. Innate
immunity is important if hosts are able to kill the par-
asites before the parasites reproduce (Jones, 2001;
Holland & Lambris, 2002). The idea that energeti-
cally-limited males exhibit reduced immunity is con-
sistent with previous studies of the energetic costs of
mounting an immune response (Siva-Jothy & Thomp-
son, 2002; Derting & Compton, 2003). However, males
raised on the high-food level supported greater para-
site population growth rates over the course of the
experiment than males raised on the low-food level,
perhaps because they had greater energy reserves or
skin surface area on which to support the parasites.
Reduced food intake results in delayed maturation,
reduced growth rates, smaller body size (Reznick,
1990), and reduced aggressive competition for mates
(Kolluru & Grether, 2005) in male guppies. It is pos-
sible that parasitized males raised on limited food suf-
fer from decreased long-term survival despite having
lower parasite loads (Sheldon & Verhulst, 1996; Loch-
miller & Deerenberg, 2000; Moret & Schmid-Hempel,
2000; Krist et al., 2004), which is an effect that was
not measured in the present experiment.

Substantial evidence was found for genetic variation
in parasite resistance and in the norm of reaction of
parasite resistance to carotenoid intake (i.e. the effect
of carotenoid intake on parasite resistance), among the
four genetically isolated sites examined. Parasite resis-
tance may evolve in response to a variety of biotic and
abiotic factors which may vary among populations
(Lyles, 1990; Hamilton & Poulin, 1999; Gleeson,
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McCallum, & Owens, 2000; Hedrick et al.,2001). Resis-
tance to Gyrodactylus is genetically based (Madhavi &
Anderson, 1985), and genetic differences in resistance
occur among populations of other host species (Leberg
& Vrijenhoek, 1994; Dalgaard et al., 2003). The sites
used in the present study differ with respect to resource
availability (Grether et al., 2001; Kolluru & Grether,
2005) and parasite prevalence (G. R. Kolluru & G. F.
Grether, unpubl. data), and both of these axes of envi-
ronmental variation may contribute to geographical
variation in parasite resistance among these sites. Pre-
liminary laboratory results suggest that males origi-
nating from the low resource availability sites support
lower G. turnbulli population growth rates than males
from the high resource availability sites (G. R. Kolluru
& G. F. Grether, unpubl. data), which is consistent with
the idea that fish that have evolved under conditions of
resource scarcity are hardier than fish that have
evolved under more benign conditions (for a similar
argument, see Van Oosterhout et al., 2003). There was
also a trend towards greater parasite resistance in
males from populations that co-occur with G. turnbulli
than in males from sites where the parasite is absent.
Thus, guppies would be a promising system for further
studies on the evolution of parasite resistance.
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