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of a long-distance migratory bird      

    Pierre     Legagneux  ,       Robert G.     Clark  ,       Matthieu     Guillemain  ,       Cyril     Eraud  ,       Marc     Th é ry   and       
Vincent     Bretagnolle           

 P. Legagneux (legagneux@gmail.com), Univ. Laval, Dépt de Biologie, 1045 Avenue de la Médecine, QC G1V 0A6, Canada. PL also at: Offi  ce 
National de la Chasse et de la Faune Sauvage, CNERA Avifaune Migratrice, Station de Chiz é , FR-79360 Beauvoir sur Niort, France. 
 –  V. Bretagnolle,  CEBC  –  CNRS, UPR 1934, Villiers-en-Bois, FR-79360 Beauvoir sur Niort, France.  –  R. G. Clark, Prairie and Northern 
Wildlife Research Centre, Environment Canada, 115 Perimeter Road, Saskatoon, SK S7N0X4, Canada.  –  M. Guillemain, Offi  ce National de la 
Chasse et de la Faune Sauvage, CNERA Avifaune Migratrice, La Tour du Valat, Le Sambuc, FR-13200 Arles, France.  –  C. Eraud, Offi  ce National 
de la Chasse et de la Faune Sauvage, CNERA Avifaune Migratrice, Station de Chiz é , FR-79360 Beauvoir sur Niort, France.  –  M. Th  é ry, D é pt 
Ecologie et Gestion de la Biodiversit é , Mus é um National d ’ Histoire Naturelle, CNRS UMR 7179, 1 avenue du petit ch â teau, FR-91800 Brunoy, 
France.                              

 Iridescent colours produced during moult likely play an important role in pair formation in birds. We sought to quantify 
geographic variation in such colouration in a duck species, Eurasian teal  Anas crecca , in winter (when mating occurs) to 
evaluate whether this variation refl ects birds ’  breeding origins or diff erential individual migration strategies in both males 
and females. We combined information on feather production region and individual attributes (body size, sex and age) of 
Eurasian teal from 82 wintering sites in France. Feather production region (moult site or natal origin) was inferred using 
feather deuterium values ( δ D f ). We performed spectral measurements to evaluate speculum colour and brightness contrasts 
for 1052 teal collected over four years. Colouration diff ered strongly among wintering regions, with birds wintering in 
eastern France exhibiting higher colour contrast than those wintering in the west. Body size and colouration were positively 
related. Th ere were no diff erences in cohort-specifi c  δ D f  values between separate wintering regions in France, indicating 
that within a winter quarter teal originated from areas across the entire breeding range. Overall, patterns of spatial variation 
in feather colouration were related most closely to body size which was consistent with predictions of a diff erential migra-
tion hypothesis, with larger and more colour-contrasting birds wintering closer to their breeding grounds. Because moult 
speed is also known to aff ect colour production, early breeders or individuals that skipped reproduction may have invested 
more or earlier in their feather quality to gain potential advantages in monopolizing future mates.   
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  Colour traits are often involved in sexual communication 
(Anderson 1994), especially in birds (Hill and McGraw 
2006) where individual condition at the time of moult can 
alter the expression of plumage colouration (Keyser and Hill 
1999, McGraw et   al. 2002, Hill 2006). Tissue colours are 
involved in many functions including camoufl age, thermo-
regulation, territoriality or mating (Endler and Greenwood 
1988, Kraaijeveld et al .  2007), and can signal information 
about individual health and quality (Lozano 1994, Peters 
et al. 2004). 

 In migratory birds, annual life-cycle periods (breeding, 
moulting, migrating, wintering) are inextricably linked. 
Understanding migratory connectivity as a factor potentially 
contributing to geographic structure of colour patterns has 
seldom been investigated (Alatalo et al. 1986, Roulin 2003, 
Norris et al. 2004, 2007, 2009). For instance, Norris et al. 
(2004, 2007, 2009) demonstrated the importance of moult-
ing grounds on carotenoid and melanin-dependent feather 
colouration in American redstart Setophaga ruticilla and 

female barn swallow Hirundo rustica, respectively. For many 
migratory bird species, moulting and mating locations are 
decoupled both in space and time. Because of diffi  culties 
associated with tracking migrants across seasons and sites,
identifying linkages between specifi c habitats and coloura-
tion is challenging (Norris et al. 2007). In the American 
redstart, breeding latitude, as inferred from feather deute-
rium (δD f ) values, rather than body condition was associ-
ated with feather colour variation (Norris et al. 2007). Th e 
ability to acquire more colourful plumage and sexual orna-
ments on moulting areas may hence have carry-over eff ects 
(Norris 2005) to the following season by aff ecting plumage 
colouration and ornaments (Saino et al. 2004) and, hence, 
the likelihood of securing a mate. A common feature of 
these studies is that colouration was based on pigments 
that are deposited into growing feathers (i.e. carotenoids 
acquired during foraging for American redstart; melanin 
synthesized in barn swallow). However, in many bird spe-
cies, feather microstructure can infl uence colour production 
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(Hill and McGraw 2006). Such structural colours are pro-
duced by interference arrays of melanin granules and/or 
air vacuoles suspended in feather keratin (Shawkey et al. 
2007). Structural colours also play a major role in bird sig-
nalling (Amundsen and Pärn 2006) and were reportedly
condition-dependent in many bird species (Keyser and 
Hill 1999, Doucet 2002, McGraw et al. 2002, Loyau et al. 
2007, Legagneux et al. 2010). Compared to pigment colou-
ration (especially carotenoid-based colouration), impor-
tant additional genetic eff ects (Johnsen et al. 2003) that 
determine the microstructure of the feathers are involved 
in structural colouration. Variation in iridescent structural 
ornaments could also be linked to moulting areas (e.g. if 
diff erences in geographic origin are associated with genetic 
diff erences or diff erent environmental resources), a pos-
sibility that has not yet been evaluated. Such geographic 
variation associated with moulting location may later be 
altered by individual migration strategies. If strong con-
nectivity exists between moulting and wintering grounds, 
geographic genetic structure can arise (Clegg et al. 2003). 
Th is may have serious repercussions for individual fi tness 
since feather colouration could aff ect mating success the 
following breeding season (Hill and McGraw 2006). 

 Ducks (family Anatidae) show complex mating behav-
iours and brightest plumages (Black 2005), involving both 
pigments and feather microstructure. Th e quality of iri-
descent feathers produced during moult is thought to play 
an important role during the subsequent fall and winter 
(Omland 1996, Black 2005) when pair formation occurs, 
often months before the breeding season (Black 2005). 
Timing of reproduction is also important; nesting earlier in 
the breeding season generally results in higher reproductive 
success among Anatidae (Bêty et al. 2003, Blums and Clark 
2004, Blums et al. 2005). Th us, despite potential disadvan-
tages of severe weather and resource competition, wintering 
at locations closer to breeding grounds could be benefi cial.

Here, we evaluated winter geographic variation in 
structural colouration of the speculum and approximate 
moulting locations of Eurasian teal Anas crecca using refl ec-
tance spectrometry to measure colouration and stable iso-
topes ( δ D f  values, see Methods) to determine moulting 
and breeding origins of birds from diff erent wintering 
areas. Deuterium in precipitation is transferred through 
food webs to higher-order consumers, including birds 
(Wassenaar and Hobson 2001). Because feathers are 
metabolically inert after growth,  δ D f  values sampled from 
feathers in a given wintering season indicate approximate 
geographic location of the previous moulting area (Hobson 
et al. 2004). Body size, sex and age were also assessed as 
potential putative correlates of variation in speculum colou-
ration. Both colour and brightness contrasts refl ected by the 
speculum were considered, taking duck colour visual sensi-
tivity into account (Vorobyev and Osorio 1998). 

 We contrasted two non-mutually exclusive hypotheses 
to account for potential geographic variation in specu-
lum colouration of wintering teal. Breeding origin could 
aff ect both feather colouration and wintering area, in 
which case  δ D f  levels should diff er among wintering 
areas. Because lower δD f  values generally indicate higher 
latitudes, there should be a negative relationship between 
δD f  and colouration as shown in American redstarts 

(Norris et al. 2004). Alternatively, diff erential migration 
strategies may modify the structure described above. Th e 
body size and dominance hypotheses (Cristol et al. 1999) 
indeed predict that larger individuals (or those in better 
condition, considered most dominant) from multiple ori-
gins should winter closer to their breeding grounds (that is, 
further north and east in the East Atlantic Flyway as con-
sidered here) than smaller (or poor-condition and sub-
dominant) birds. Under this hypothesis,  δ D f  levels may 
not necessarily diff er among wintering areas because birds 
would not be expected to segregate according to breeding 
origin. If body size is a reliable proxy for individual quality 
and if individual quality translates into feather colouration, 
then more colourful birds are expected to be larger and to 
winter closer to their breeding grounds.   

 Material and methods  

 Study sites and species 

 Teal is a long distance migrant species that breeds and 
moults in north-eastern Europe and winters in south-
western countries (Cramp and Simmons 1977, Arzel et al. 
2006). Adult female teal replace all wing feathers soon after 
breeding either close to or on their breeding grounds (Cramp 
and Simmons 1977), whereas juvenile teal grow wing feath-
ers prior to fl edging. By contrast, males leave females during 
incubation, and sometimes travel to distinct, distant moult-
ing sites where they congregate (Scott and Rose 1996). 

 One feather from the wing colour patch (part of the 
speculum with feathers restricted to the distal side of the 
secondary remiges) was collected from shot individu-
als (n  �    1052) at 82 locations in France (Fig. 1a) dur-
ing four consecutive winters (2001 – 2005). Hunters were 
asked to send one entire wing to us in envelopes. Wings 
were stored in a dark and dry place until laboratory mea-
surements. Shot teal could be leaner than teal trapped in 
protected areas (Guillemain et al. 2007). However, using 
Guillemain et al. ’ s data (2007), we found no signifi cant 
diff erences in wing length between individuals captured in 
protected areas and shot birds recovered in the vicinity of 
protected natural reserves in any sex and age class (adult 
females: t  �    0.70, DF  �    336, p  �    0.49; juvenile females: 
t  �    1.91, DF  �    1657, p  �    0.06; juvenile males: t  �    1.26, 
DF  �    1459, p  �    0.21; no adult males were sampled here 
for reasons given below), suggesting that our results involv-
ing body size, as indexed by wing length, were unlikely 
to be strongly biased. Th e 82 wing collection locations 
within France were visually clustered into fi ve biogeo-
graphic regions: Atlantic, Channel, Brenne, Camargue and
East (Fig. 1a). Th ese regions are consistent with major teal 
concentrations in winter (Fouque et al. 2009). Birds were 
sexed and aged (adults vs juveniles) using plumage criteria 
(covert and scapular feathers, Baker 1993). For all birds, 
hunters were asked to provide body mass upon sending 
the duck wings (nearest 10 g with a top-loading scale). 
Flattened wing length was measured by three experienced 
technicians (nearest 1 mm with a ruler) and 79.2% of 
the wings representing all regions were measured by only 
one technician. 
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Figure 1.     (a) Eurasian teal Anas crecca feathers sampled in France (wintering ground). Dot size is proportional to the number of individuals. 
Five regions are shown, from west to east: Atlantic, Channel, Brenne, Camargue, East. (b) Bar plot of the colour contrasts (residuals from 
a model with Date, Year, Wing length and Age) split by regions and sexes. Longitude and colour contrast are positively related in both sexes, 
but the relationship is more pronounced for males (see text and Table 1A). (c) Relationship between colour contrasts (residuals from a 
model with Date  �  longitude, Sex  �  longitude and the main eff ects, Year and Age) and wing length. (d) Boxplots (median, quantiles and 
SE) of the feather deuterium ( δ D f ) values for each of the wintering areas.  

 Eurasian teal wings were collected in compliance 
with European legal requirements (European Conven-
tion ETS no. 123). Working with dead ducks harvested 
legally by hunters exempted any approval by a commit-
tee for animal protection. All hunters, technicians and 

researchers that participated in data collection received 
training (provided by the Museum National d ’ Histoire 
Naturelle and the Offi  ce National de la Chasse et de la 
Faune Sauvage) in duck capture, identifi cation and mea-
surement techniques.    
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variables were previously tested on the same dataset 
(Legagneux et al. 2010) and only additive eff ects were 
found. We started with a model (named Base in the 
tables) that included Year  �  Date  �  Age  �  Sex  �  Wing 
length and Year  �  Date  �  Sex for the colour and brightness 
contrasts, respectively (Legagneux et al. 2010). We then 
evaluated models with interactions between latitude or 
longitude and the other variables. On the reduced data-
set (n  �    126) which incorporated  δ D f  measurements, the 
objective was to assess the relationship between colouration 
and isotopic signatures. The subsample was structured 
according to region, sex and age (see above). We applied 
the same covariates listed above except that X and Y were 
replaced with three REGIONs (Channel, Brenne and 
Camargue) in the GLMs. Note that results were qualitatively 
unchanged when region was replaced with longitude or 
latitude (X and Y, analyses not shown). Because the core 
range of the breeding/moulting locations may be of 
higher quality for breeding birds, we also included a non-
linear (quadratic) effect of inferred moult location ( δ D f  

2 ). 
Competing models were ranked using Akaike ’ s informa-
tion criterion (AIC c  ) (Burnham and Anderson 2002) and 
plausible models were considered to be those within two 
AIC c  units of the best-approximating model (i.e. with 
the lowest AIC c  value). When two or more models pre-
sented equal fi t (i.e.  Δ AIC c   �    2), we model-averaged the 
estimates of para meters and associated unconditional 
standard errors. All means and slopes (β) are presented 
with SE. Statistical analyses were performed in R 2.11 
using AICcmodavg package.   

 Results 

 Results of the model selection procedure indicated that 
year, date, sex, age and two continuous variables (longitude 
and wing length) as well as some interactions with longi-
tude explained colour and brightness variation (Table 1). 
Colour contrast was positively related to longitude but 
not to latitude, with longitude also interacting with date 
and sex; individuals wintering in the east exhibited greater 
colour contrast than did western individuals (Fig. 1b, 
Table 1A). Th is gradient was more pronounced for males 
( β   �    4.4 10 �3   �    6.6 10 �4 ) than for females ( β   �    2.5 
10 �3   �    5.9 10 �4 , Fig. 1b). Th e interaction between date 
and longitude revealed that colour contrast was related to 
longitude, but only during late winter. For instance, rela-
tionships were always positive but weaker in September and 
November ( β   �    1.9 10 �3   �    1.3 10 �3  in September and 
November and  β   �    3.3 10 �3   �     0.9 10 �3  in the other 
months). Yearlings were duller than adults (eff ect size  �   
�0.54    �    0.16). Wing length and colour contrast were posi-
tively related ( β   �    6.7 10 �2   �    1.3 10 �2 , Fig. 1c). 

 For brightness contrast, two competitive models were 
obtained (Table 1B), providing some indication of an inter-
action between date and longitude. Brightness contrast 
decreased with collection date ( β   �  �2.2 10 �3   �    5.3 10 �4 ) 
and diff ered by year and sex  �  longitude (Table 1B). 
Brightness contrast decreased with longitude, an eff ect 
that was more pronounced in males than in females 
( β   �  �3.4 10 �3   �    7.7 10 �4  and  β   �  �2.2 10 �3   �    5.3 

 Colour measurements and spectral analysis 

 Speculum refl ectance was measured with a portable spec-
trometer (see details in Legagneux et al. 2010). Refl ec-
tance spectra were taken at 90 °  incidence relative to a 99% 
refl ectance standard (300 – 700 nm Spectralon) and to dark 
current (black velvet background). We used the physiologi-
cal visual model of Vorobyev and Osorio (1998) with mal-
lard visual sensitivities measured by Jane and Bowmaker 
(1988). Colour and brightness contrasts were computed 
against a standard black background (wing fl ash-marks are 
surrounded by black patches onto the same or adjacent 
secondary remiges) with diff use daylight CIE D65 as ambi-
ent light irradiance. All computations were conducted with 
Avicol software (Gomez 2006).   

 Stable isotope analysis 

 Potential exists to discriminate birds from broad regions of 
western Europe and east into northern Russia, due to strong 
gradients in growing season precipitation and hence feather 
isotopes (Hobson et al. 2004). Some assignment error 
using isotopes occur and statistical approaches have been 
designed to reduce uncertainty when mapping animal ori-
gins (Wunder and Norris 2008). However, our aim was 
to investigate if birds from diff erent wintering areas origi-
nated from distinct, but broad-scale moulting grounds, 
rather than attempt to estimate specifi c bird origins. Stable 
isotope analysis was performed on a randomly-selected 
sample, stratifi ed by age and sex cohort (excluding adult 
males that may moult in areas that diff er from their birth 
place or breeding grounds) so that the colour contrast dis-
tribution of the subsample (n  �    126: 14 per age/sex/region 
classes) matched that of the entire sample. Th ree regions 
were sub-sampled for this analysis because larger sample 
sizes were available: Channel (total n  �    663), Brenne (total 
n  �    160) and the Camargue (total n  �    179). Feathers were 
cleaned of surface oils using a 2:1 chloroform:methanol 
solution, then dried in a fume hood. Stable-isotope assays 
were performed at National Hydrology Research Center, 
Environment Canada, Saskatoon. Stable hydrogen isotopes 
of feathers were measured using comparative equilibration 
method as described by Wassenar and Hobson (1998). 
Stable-hydrogen isotope ratios ( 2 H/ 1 H  �  R) are expressed 
in  δ  notation ( ‰ ) where  δ   �  [(R sample /R standard ) � 1]  �  1000 
and R standard  is the hydrogen isotope ratio of Vienna Standard 
Mean Ocean Water. For a detailed description of sample 
preparation, analytical and within-sample measurement 
errors, keratin standards and analyses see (Clark et al. 2006). 
Th e δD f  values derived from teal sampled on the wintering 
grounds (September – January) were used to infer feather 
growth region during the previous June – August (Hobson 
et al. 2004).   

 Data analysis 

 General linear models (GLM) were used on the full data-
set to evaluate whether colour or brightness contrasts 
were related to wintering latitude (X) and longitude (Y). 
Year, date (in days since 1 August), body size, body mass, 
sex and age classes were also included in the models; these 
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 Discussion 

 To our knowledge, this is the fi rst study to examine 
geographic variation in structural-based feather coloura-
tion in a long-distance migrant bird species. Speculum 
colouration in teal diff ered among wintering areas. How-
ever, this spatial organization in speculum colours was not 
related to diff erent breeding or moulting origins of birds; 
rather, the  δ D f  values indicated considerable mixing of teal 
from diverse breeding regions (or from the same vast area, 
Guillemain et al. 2009) within the wintering areas. Our 
results nevertheless demonstrate a geographic structure of 
wing colouration in winter. Teal wintering further east had 
more brightly-coloured speculums than did individuals 
wintering further west, and wing colour contrast increased 
with body size. Guillemain et al. (2009) recently confi rmed 
a pattern of diff erential migration in teal over a latitudi-
nal gradient in Europe (Cristol et al. 1999), with relatively 
more males occurring further north. Th is result was not 
associated with diff erent body masses between northern and 
southern wintering areas. However, because of the physical 
geography and wintering conditions of Europe (Gill 2007), 

10 �4 , respectively). Th is is the inverse pattern of the colour 
contrast (brightness and colour contrasts were negatively 
related). Brightness was negatively related to longitude in 
all years, but the strength of this relationship varied among 
years ( β   �  �2.8 10 �2   �    7.6 10 �4 ,  β   �  �6.2 10 �3   �    1.8 
10 �3 ,  β   �  �3.5 10 �3   �    6.8 10 �4 ,  β   �  �1.9 10 �3   �    5.1 10 �4  
and  β   �  �2.7 10 �3   �    3.3 10 �3  in 2001, 2002, 2003, 2004 
and 2005, respectively). Note that individuals from the 
eastern region (n  �    10) were not outliers responsible for the 
eff ect of longitude: removing data for this region did not 
change model ranks (Supplementary material Appendix 1, 
Table A1). 

 On the reduced dataset involving  δ D f  measurements, 
region, date, sex and  δ D f  were retained in the most 
parsimonious models for colour variation (Table 2A, B). 
Colour contrast diff ered according to region (mean colour 
contrast  �    12.3    �    0.3; 13.2    �    0.4 and 14.3    �    0.4 for 
Channel, Brenne and Camargue, respectively, Table 2A) 
and decreased slightly with collection date ( β   �  �1.6 
10 �2   �    1.9 10 �2 ). Colour contrast was weakly positively 
related to  δ D f  ( β   �    2.1 10 �2   �    2.7 10 �2 ). Brightness 
contrast also diff ered according to region (mean bright-
ness contrast  �    20.8    �    0.3; 21.2    �    0.3 and 19.6    �    0.4 for 
Channel, Brenne and Camargue respectively), date ( β   �    
1.1 10 �4   �    4.9 10 �3 ) and sex (eff ect size  �    0.96    �    0.40) 
but not according to  δ D f  (Table 2B). Moreover,  δ D f  only 
varied with date, sex (in interaction with date, Table 2C) 
and age, while  δ D f  was similar among wintering regions 
(Fig. 1d).   

  Table 1. Results of model selection from generalized linear models 
on colour (A) and brightness (B) contrasts of teal speculum (n  �    1052). 
Year, Age and Sex were the explanatory cofactors and Date, Wing 
length (Wing), X (longitude) and Y (latitude) were the explanatory 
covariates. When an interaction ( � ) is indicated, the main effects 
were also incorporated in the model (though not shown here). The 
best-approximating models are shown in bold. Variables, number of 
estimated parameters (k),  Δ AIC c , Akaike weights ( ω i), deviance (Dev) 
and Log-likelihood (LL) are provided for the six most parsimonious 
candidate models. Base models (Base) incorporated additive effects 
of Year  �  Date  �  Age  �  Sex  �  Wing in (A) and Year  �  Date  �  Sex in 
(B) (see text for details).
(A)  

Model k ΔAIC c  ω i Dev LL

 Base  �  Sex  �  X  �  Date  �  X  13  0  0.69  6050.8 �� 2319.1 
Base  �  Sex  �  X 12 3.51 0.12 6084.6 �2321.8
Base  �  Date  �  X 12 4.36 0.08 6089.8 �2322.2
Base  �  Age  �  X  �  Date  �  X 13 6.05 0.03 6087.6 �2322.1
Base  �  Wing  �  X  �  Date  �  X 12 6.37 0.02 6089.5 �2322.2
Base  �  X 11 6.86 0.01 6117.5 �2324.5
Base 10 63.96 0.00 6490.3 �2354.1

    (B)

Model k ΔAIC c  ω i Dev LL

 Base  �  Year   �   X  �  Date   �   
X  �  Sex   �   X 

 15  0  0.49  4588.8  �2279.2 

 Base  �  Year   �   X  �  Sex   �   X  14  1.36  0.25  4590.1  �2280.9 
Base  �  Year  �  X  �  Date  �  X 14 2.97 0.11 4591.7 �2281.7
Base  �  Year  �  X 13 3.62 0.08 4592.4 �2283.0
Base  �  Date  �  X  �  Sex  �  X 11 5.27 0.04 4594.0 �2285.9
Base  �  Date  �  X 10 8.48 0.01 4798.0 �2288.5
Base  8 58.48 0.00 5027.9 �2288.5

  Table 2. Results of model selection from generalized linear models 
on colour (A) and brightness contrasts (B) of teal speculum on a 
reduced dataset (n  �    126) that incorporate  δ D f  values. Year, Region 
(Channel, Brenne and Camargue), Age and Sex were the explana-
tory cofactors. Date, Wing length and  δ D f  were the explanatory 
covariates. We also included a non-linear (quadratic) effect of the 
putative moult location ( δ D f  

2 ). In (C) we used the same covariates to 
explain  δ D f  variation. Column headings and base models are 
defi ned in Table 1.
(A)  

Model k ΔAIC c  ω i Dev LL

 Region  �  Date  �   δ D f   6  0  0.23  684.4  �278.3 
 Region  �  Date  5  0.16  0.22  697.8  �279.5 
 Region  �  Date   �    δ D f   7  0.25  0.21  673.2  �277.3 
Region  �  Date  �   δ D f  

2 7 2.23 0.08 684.2 �278.3
Region  �  Date  �  Sex 6 2.35 0.07 697.7 �279.5
Region  �   δ D f   �  Date 8 2.88 0.06 675.1 �277.5
Null model 2 22.34 0.00 805.2 �292.8

    (B)

Model k ΔAIC c  ω i Dev LL

 Region  �  Date  �  Sex  6  0  0.46  512.9  �260.7 
 Region  �  Date  �  Sex  �  Year  9  1.36  0.23  490.2  �258.0 
Region  �  Date  �  Sex  �  Year  �  Age 10 3.52 0.08 489.4 �257.9
Region  �  Date 5 3.65 0.07 538.1 �263.6
Region  �  Date  �  Year 8 4.88 0.04 514.3 �260.9
Region  �  Date  �   δ D f 6 5.69 0.03 537.4 �263.6
Null model 2 25.92 0.00 625.3 �278.0

        (C)

Model k ΔAIC c  ω i Dev LL

 Date   �   Sex  �  Age  6  0  0.43  61847.2  �553.04 
 Date   �   Sex  5  0.03  0.42  61851.1  �554.16 
Region  �  Sex  �  Year  �  

Sex  �  Age
8 3.57 0.07 61847.2 �552.56

Region  �  Date 5 4.88 0.04 65551.9 �556.59
Year  �  Date 6 5.09 0.03 63381.2 �555.59
Region  �  Date 7 8.75 0.01 65232.6 �556.29
Null model 2 31.39 0.00 70211.6 �573.05
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Assortative mating according to body condition (Heitmeyer 
1995) may then explain the geographic variation of coloura-
tion found in both sexes, with more colourful females then 
halting migration earlier than less colourful ones. Further 
studies are needed to investigate geographic variation in male 
and female mate choice, especially in relation to coloured 
ornaments and conspecifi c density. 
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