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Abstract

Although, generally, the origin of sex-limited traits remains elusive, the sensory exploitation hypothesis provides an
explanation for the evolution of male sexual signals. Anal fin egg-spots are such a male sexual signal and a key characteristic
of the most species-rich group of cichlid fishes, the haplochromines. Males of about 1500 mouth-brooding species utilize
these conspicuous egg-dummies during courtship – apparently to attract females and to maximize fertilization success.
Here we test the hypothesis that the evolution of haplochromine egg-spots was triggered by a pre-existing bias for eggs or
egg-like coloration. To this end, we performed mate-choice experiments in the basal haplochromine Pseudocrenilabrus
multicolor, which manifests the plesiomorphic character-state of an egg-spot-less anal fin. Experiments using computer-
animated photographs of males indeed revealed that females prefer images of males with virtual (‘in-silico’) egg-spots over
images showing unaltered males. In addition, we tested for color preferences (outside a mating context) in a
phylogenetically representative set of East African cichlids. We uncovered a strong preference for yellow, orange or reddish
spots in all haplochromines tested and, importantly, also in most other species representing more basal lines. This pre-
existing female sensory bias points towards high-quality (carotenoids-enriched) food suggesting that it is adaptive.
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Introduction

The haplochromines are the most famous and diverse group of

cichlid fishes and widely distributed in Africa. Yet, their center of

diversity is located in East Africa, where they constitute, for

example, the entire cichlid species flocks of lakes Victoria and

Malawi [1,2,3]. The actual species count for haplochromines

remains unknown, although it is assumed that at least 1500 species

are teeming in the lakes and rivers of East Africa [4,5]. Save a

small number of species, all haplochromines exhibit so-called egg-

spots, making this trait the characteristic feature of haplochromines

and a putative key innovation mediating their evolutionary success

[1,4]. The exceptions are several derived species that have lost egg-

spots secondarily and a few basal species that presumably never

had them [1].

Genuine (‘true’) egg-spots are found on male anal fins and

consist of a conspicuous yellow, orange, or reddish inner circle and

a transparent outer ring (Figure 1) [3,6,7]. This makes them a

costly trait, as fish cannot synthesize carotenoid-based pigments

themselves [8,9]. Egg-spots appear to resemble real eggs, which is

why it has been proposed that these markings are ‘dummies’ that

mimic freshly laid eggs in order to attract females and to maximize

fertilization success [6,7]. All haplochromines are female mouth-

brooders, which means that females incubate their offspring – until

fully developed – in their oral cavities. Immediately upon

spawning, a haplochromine female takes up the eggs into her

mouth; the territorial male instantly presents his anal fin egg-spots,

to which the female responds in form of snatching, thereby

positioning her mouth close to the males’ genital papilla that

discharges sperm. Wickler’s egg mimicry hypothesis [6,7] is

disputed, however, as egg-spots often do not resemble size, shape

and color of a species’ actual eggs (see [10]). Also, it has been

shown that fertilization success did not vanish when egg-spots were

removed artificially [11,12].

Here, we focus on the evolutionary origin of anal fin egg-spots

rather than on their immediate function. More specifically, we test

the hypothesis that the exploitation of a pre-existing bias has

triggered the evolution of this conspicuous male trait in haplochro-

mine cichlids [10]. The evolutionary origin of sexual signals is

largely unknown and a matter of debate [14]. It is commonly

accepted, however, that male signals can evolve in response to pre-

existing sensory biases in females (‘sensory exploitation hypothesis’)

[13,14,15,16,17,18]. Such a female sensory bias may well be

adaptive, namely if it evolved in another context than mating and

through natural rather than through sexual selection [14,17,18].

Male guppies, for example, seem to mimic fruits that are a valuable

food source and females are attracted by both males displaying the

trait and by objects with respective colors [19]. Male swordtail

characins, on the other hand, possess extended and pigmented

opercular paddles that resemble invertebrate prey organisms [20].

Computer simulations also revealed that – at least under some

circumstances – foraging preferences may result in increased mating

preferences for similarly colored mates [21]. It has further been

shown that disruptive female preferences in three-spine sticklebacks
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are linked to the visual systems’ adaptation to different light regimes

[22]. A similar case of ‘sensory drive speciation’ is reported from

Lake Victoria haplochromines, where adaptations to different

turbidity levels mediate female mate choice [23]. Finally, a

preference for males with elaborated ornaments could also be

adaptive in situations where males must ingest carotenoids to

display these colors (e.g. [24]).

We find that females of a basal and egg-spot less haplochromine

species prefer males with artificial (‘in-silico’) egg-spots and that

haplochromines and more basal and non-mouth-brooding cichlid

lines prefer color dots resembling egg-spots.

Results

Laboratory mate choice trials
We first tested whether females of the basal and egg-spot-less

haplochromine cichlid Pseudocrenilabrus multicolor (Figure 1) could

discriminate between males of their own species and males of

another, more derived and egg-spot bearing haplochromine

(Astatotilapia burtoni), when presented animated images on a

computer screen in front of an experimental tank (Figure 2A).

We found that focal females spent significantly more time and

interacted significantly more often with the animation showing the

conspecific male (related sample t-test; time spent: N = 12; t = 3.13;

df = 11; p,0.01; number of reactions: N = 12; t = 4.72; df = 11;

p,0.001; reaction time: N = 12; t = 6.06; df = 11; p,0.001) (see

Figure 2B; Movie S1). Apart from demonstrating the females’

ability to recognize conspecifics, this experiment highlights the

usefulness of computer animations in female mate choice

experiments with P. multicolor.

Pseudocrenilabrus multicolor females did not discriminate between

animated images of males and such in which the red fin-fringe had

been painted in- silico with the anal fin’s brownish ground color

(related sample t-test; time spent: N = 15; t = 20.17; df = 14;

p = 0.87; number of reactions: N = 15; t = 0.38; df = 14; p = 0.71;

reaction time: N = 15; t = 0.38; df = 14; p = 0.71; Figure 2C),

suggesting that females are not advertent to the red fringe of male

anal fins when choosing a mate. We confirmed this using live fish

and a two-way choice set-up (time spent: related sample t-test;

N = 15; t = 0.04; df = 14; p = 0.97; number of interactions:

Wilcoxon signed-rank test; N = 15; V = 65; p = 0.78; interaction

time: related sample paired t-test; N = 15; t = 0.05; df = 14;

p = 0.96). This demonstrates that preference tests using computer

animations reveal results congruent to mate choice experiments

with live fish.

We found, however, that focal females spent significantly more

time in front of the image of a male with the artificial egg-spot

(Wilcoxon signed-rank test; N = 20; V = 41; p = 0.015); females

also reacted more often with the egg-spot bearing male by

following its animated movements (related sample t-test; N = 20;

t = 22.35; df = 19; p = 0.029); and, P. multicolor females spent more

time reacting with the image of a modified male (Wilcoxon signed-

rank test; N = 20; V = 42.5; p = 0.020) (Figure 2D). This clearly

indicates that females of an ancestral haplochromine species show

a preference for males with the derived character state of egg-

spots, which is suggestive for the existence of a pre-existing bias for

orange spots.

Color-dot preference tests
In our color-dot experiments in the field, all four tested

haplochromine species showed a strong preference for yellow,

orange or red dots (Tables S1, S2). Importantly, most other species

belonging to basal cichlid lineages did so, too, and only three

species showed a weak (C. frontosa and C. leptosoma) or strong (O.

nasuta) preference for green. Notably, C. frontosa reacted almost as

often to orange dots (29 times) as it did to green ones (30 times); a

similar situation was observed for C. leptosoma between yellow (8

times) and green (11 times). For both species, a clear preference

could thus not be determined. Also, with only 20 pecks each in a

period of five minutes, C. leptosoma and O. nasuta showed the by far

smallest number of pecks, questioning the strength of their

preference for a particular color. In any case, a character state

reconstruction on the basis of a molecular phylogeny (Figure 3C)

clearly indicates that the preference for red dots existed before the

evolution of haplochromines, irrespective of how we coded the

preference for C. frontosa, C. leptosoma and O. nasuta (indecisive,

orange or green, yellow or green).

In the laboratory experiments using computer animated color

dots (Figure 3B, D–F), we detected a non-random distribution of

color preferences in all three species tested (Friedman test; A.

burtoni, N = 20; p,0.001; P. multicolor, N = 20; p,0.001; J. marlieri,

N = 20; p,0.001).

In line with our color preference experiments in the field, all

three species showed a preference for egg-spot like colors (yellow,

orange and red), while blue and green were hardly ever chosen

(Figure 3D–F, Table S3). Importantly, A. burtoni, which is the only

species that we could test both in the field and in the lab, showed

highly congruent responses to the stationary color dots in the pond

set-up and the animated color dots in the laboratory experiments.

Interestingly our lab experiments uncovered sex-specific differ-

ences in the haplochromines: A. burtoni females significantly more

often pecked at and followed the orange-colored dots (Wilcoxon

rank-sum test; N = 20; p = 0.037) and P. multicolor females

significantly more often pecked at and followed the red-colored

dots than did the males (Wilcoxon rank-sum test; N = 20;

p = 0.045), while P. multicolor males reacted more often to yellow

Figure 1. Schematic consensus phylogeny of the East African
cichlids based on mitochondrial and nuclear gene segments
(after [1,25,36]). The haplochromines (indicated by grey branches) are
a derived and species-rich clade. The males of most haplochromine
species display anal fin egg-spots, just as exemplified here for
Astatotilapia burtoni. A few ancestral species, such as Pseudocrenilabrus
multicolor, do not have egg-spots. Note that A. burtoni belongs to a
riverine clade and occurs within Lake Tanganyika and surrounding
rivers.
doi:10.1371/journal.pone.0025601.g001
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dots compared to females (Wilcoxon rank-sum test; N = 20;

p = 0.045).

Discussion

Anal fin egg-spots are a characteristic feature of the most

species-rich group of cichlids, the haplochromines [1,4,25]. While

several hypothesis exist that seek to explain the function of this

conspicuous male trait (see e.g. [6,7,12]), little is known about their

evolutionary origin. Here we test the hypothesis that male egg-

spots in haplochromines evolved to exploit a pre-existing bias in

females [10]. A crucial prerequisite in favor of this hypothesis is

that the preference for egg-spots (the sensory bias) is phylogenet-

ically older than anal fin egg-spots themselves [14,18,26,27]. We

confirm this prediction in two independent and per se comple-

mentary experiments.

First, we show that females of the basal haplochromine species

Pseudocrenilabrus multicolor, which manifests the plesiomorphic

character-state of an egg-spot-less anal fin (Figure 1), do show a

clear preference for the animated photograph of a male with an

artificial egg-spot over an otherwise identical animated photo-

Figure 2. Female preference tests in Pseudocrenilabrus multicolor using computer animated stimuli. (A) The experimental set-up consists
of an iMac computer behind an experimental aquarium (60630630 cm). Two animations are shown simultaneously (in this case a conspecific male
and a heterospecific, Astatotilapia burtoni; see [B]). (B) Results from the ‘benchmark’ experiment, in which P. multicolor females were given the choice
between a conspecific and a heterospecific (A. burtoni) male. The females reacted significantly more often with the animated image showing a
conspecific male. (C) Results from the ‘red fringe’ experiments, in which P. multicolor were left the choice between a male with and one without the
red fringe on the tip of the anal fin. We could not detect any difference in female response, which is also backed-up by two-way choice experiments
with live fish (see Figure S1). (D) Results from the ‘egg-spot’ experiment, in which P. multicolor females could choose between a natural male and a
male bearing an in- silico egg-spot. Females showed a significant preference for the male with the artificial egg-spot. Arrowheads indicate the minute
differences between the images presented to the females.
doi:10.1371/journal.pone.0025601.g002

Figure 3. Color preference tests in different East African cichlid species. (A) Set-up of the field experiment at Lake Tanganyika. Fishes were
presented five color dots on a transparent foil and we measured the number of pecks towards each dot. (B) Set-up of the laboratory experiments.
Individual fishes were presented five color dots on a computer screen. (C) Ancestral character state reconstruction of color preferences in a
phylogenetically representative set of cichlids from Lake Tanganyika. Most species clearly preferred orange or red colors. Importantly, also the
substrate spawning lamprologines showed such a preference. (D–F) Results from the color-dot preference experiments in the laboratory with the
haplochromines Astatotilapia burtoni (D) and Pseudocrenilabrus multicolor (E) and the lamprologine Julidochromis ornatus (F). Significant differences
between males and females are indicated.
doi:10.1371/journal.pone.0025601.g003
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graph of a male without an egg-spot (Figure 2D). Obviously, P.

multicolor females perceive the minute difference between the two

computer-animated images of males (i.e. the artificial egg-spot,

which spans less than 1% of the lateral area), which seems

plausible given the visual capabilities of cichlids [17,18].

Second, our field experiments suggest that a preference for

yellow, orange or red dots, which resemble the color and shape of

egg-spots, existed before the radiation of the haplochromines.

Most East African cichlid species tested and, importantly, the

majority of the egg-spot-less species belonging to cichlid lineages

basal to the haplochromines, show clear preferences for such egg-

spot-like dots over blue and green dots (Table S1, Figure 3). The

only three species not showing a clear preference for egg-spot-like

colors were indecisive and/or showed very weak preferences

overall (as measured by the number of pecks per 5 minute trial).

Our character state reconstructions indicate that the preference for

egg-spot-like colors was present before the emergence of the first

haplochromines and that even the substrate spawning lamprolo-

gines show a bias towards yellow, orange or red dots (Figure 3C).

These results are backed up by our color preference experiments

under laboratory conditions in two haplochromines and one

lamprologine (Figure 3D–F).

Taken together, our experiments suggest that sensory exploita-

tion of a pre-existing bias was responsible for the evolution of anal

fin egg-spots in haplochromine cichlids. The question is now what

could have triggered the bias for egg-spot-like dots in (female)

cichlids. Tobler [10] proposed that it is the affinity to detect own

eggs as such. This should have evolved in mouth-brooding females

as a result of their limited number of relatively large eggs and,

consequently, the immediate reduction of fitness when failing to

take up all the eggs. This hypothesis is compatible with our mate

choice experiments in the basal and egg-spot-less haplochromine

P. multicolor. Yet, the preference for egg-spot-like dots is prevalent

in male and female cichlids and also in substrate spawners basal to

haplochromines (which, nevertheless, perform brood care). This,

in turn, suggests that it is not the affinity for own eggs that evolved,

as males should not show this affinity and substrate spawners have

much smaller and less conspicuous eggs. It seems more likely that

the observed pre-existing bias in East African cichlids points

towards high quality – e.g. carotenoid-rich – food like shrimps,

algae and, notably, fish eggs. A preference for carotenoid-enriched

diets is known from several taxa (e.g. [28,29,30]), and the

heritability of algal-foraging ability in guppies suggests that, in

this case, females might actually benefit from preferring males with

a pronounced carotenoid-based coloration indicative of their

foraging skills [29,31]. Such a pre-existing bias towards yellow,

orange or reddish dots that resemble food could reasonably well

explain why yellow, orange or reddish egg-spots (i.e. convergently

evolved blotches on the fins of other cichlids [4,10,25]) have

evolved multiple times in addition to and outside the haplochro-

mines.

Methods

Laboratory mate choice trials
All laboratory mate choice experiments were performed at the

Zoological Institute of the University of Basel under the permission

of the Cantonal Veterinary Office, Basel, Switzerland (permit

number 2403). Live cichlids were kept in isolation and under

standardized conditions (12 h dark/12 h light; 25uC).

Before turning towards our central question, we had to assess

the usefulness of computer animations in experiments with the

haplochromine cichlid species Pseudocrenilabrus multicolor. While

computer-animated stimuli are frequently used in West African

cichlids [32,33], little is known about how haplochromines react to

it. Finally, there is a technical component too, as it has been shown

that the reaction to a stimulus may vary depending on the

computer screen used [34]. Therefore, we first tested three

different computer screens: a SONYH 170 CRT display, and two

AppleH iMac computers with a dull 170 and a bright 210 LCD

display, respectively. In our set-up, females reacted most when

presented images on the 170 iMac G5 (pers. observation). We also

evaluated still and animated photographs of males and found that

female P. multicolor reacted most to the following animations:

7 seconds upwards movement, 2 seconds remaining in still

position, 7 seconds downward movement, 2 seconds remaining

in still position (pers. observation; the animations were created

with AppleH KeynoteH software and exported as QuicktimeH
movies).

As a benchmark, we tested whether P. multicolor females can

discriminate between a conspecific and a heterospecific (Astatoti-

lapia burtoni) male. To this end, we positioned an iMac (170 iMac

G5 running Mac OSX version 10.5.7; chip model ATY

Radeon61600, 14006900 pixels, 32 Bit color) directly behind a

glass aquarium (60630630 cm) so that it covered about 2/3 of the

aquarium’s width (Figure 2A). On the very left and the very right

of the iMac, there was a 10.5 cm neutral zone not covered by the

screen. These areas plus the two sides were covered with visual

barriers, so that only the front panel remained transparent. Thus,

we could video-tape each experimental trial with a SONYH DCR-

HC90E HandycamH (note that all computer- animated experi-

ments were performed in a closed compartment to avoid

interference of the experimenter). The bottom of the aquarium

was covered with sand, and in the front center, right below the

filter, we placed half a flower-pot to provide shelter to the focal

female. For the animations, the screen was divided into two

10.5 cm wide outer parts (where the actual animations were

shown) and an 18 cm central part that remained grey (Figure 2A).

In this experiment, twelve P. multicolor females were exposed to two

size-matched images of a male P. multicolor and a male A. burtoni,

which were animated to move up and down in an infinite loop (see

above for animation settings); the images of the males were pasted

into a neutral grey background (R: 149, G: 149, B: 149). Each

female was tested twice, once in the morning and once in the

afternoon (with at least 5 h between experiments), and the stimuli

were switched between the two rounds (with the morning set-up

being chosen randomly). At the beginning of each experiment, the

female was allowed to habituate for 10 minutes before the parallel

animations started. Beginning from the first reaction of the focal

female to the animation (i.e. the female swimming towards the

animation, stopping in front of the monitor, facing the stimulus

and swimming along with the animation), we recorded the

following three – not mutually exclusive – behavioral parameters

for a period of ten minutes (based on the video-taped material): (i)

‘time spent’ (in seconds) as the time that a female spent in front of

each animation (practically, we started counting when 50% of the

female body entered the preference zone, i.e. the 10.5 cm grey

zone of each animated male, and stopped when 50% of the female

body left this zone); (ii) ‘number of reactions’ (integer) in how often a

given female would follow the up- or downward-movement of a

stimulus male; and (iii) ‘reaction time’ as the time (in seconds) that a

female would actively follow the up- or downward-movement of a

stimulus male. For statistical analyses, the counts from the two

rounds of experiments with each focal female were averaged. To

account for individual differences in the total time spent and the

number of reactions among females, we used individual percent-

ages of the total number of observations as response variables

[32,34]. All data were analyzed with the software R (vers. 2.8.1).
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In a second round of experiments, we focused on the red fringe

on the anal fin of male P. multicolor, as we could not exclude the

possibility that this trait is the target of female choice in this basal

haplochromine species. We used the same parameters as before,

except that this time we gave females the choice between two

images of a male, of which one retained the natural phenotype,

whereas the other was modified in-silico so that its red fringe was

replaced by the brownish ground color of the rest of the anal fin

(using AdobeH PhotoshopH). We tested fifteen focal females and

recorded the very same behavioral parameters as mentioned

above.

We then repeated this experiment with live fish using a

dichotomous set-up (Figure S1A): six pairs of size-matched males

of P. multicolor were formed to avoid bias. The red fringe on the

anal fin of one male of each size-matched pair was removed by

fin-clipping. On the other male a piece of dorsal fin was cut to

control for possible treatment effects (Figure S1B). The size-

matched males of each pair were randomly placed in one of the

two outer tanks (40624624 cm) adjacent to a central tank

(60630630 cm). The males were allowed to habituate for

several days; during this period the males were inspected for

signs of stress. Then, a focal female was placed into the central

tank. We recorded the following parameters during 10-minute

trials starting with the first interaction: (i) ‘time spent’ (in seconds)

as the time that a female spent in a preference zone (12 cm

adjacent to each male tank); (ii) ‘interactions’ as the number of

independent visits to a preference zone; and (iii) ‘interaction time’

as the time (in seconds) that a female spent in front of an

interacting male.

Finally, we tested for a pre-existing bias for egg-spots in females

of P. multicolor using computer animated stimuli. We presented

females two identical male images, except that one of them had an

artificial egg-spot. This single egg-spot was designed to resemble

real P. multicolor eggs in color and average size. Therefore, we

photographed and measured 46 eggs and determined the average

size (1.86 mm) and color hue (R: 255, G: 150, B: 45). This

‘average’ egg-spot was then pasted onto the anal fin of a male

image using PhotoshopH.

Color-dot preference tests
Pond experiments. The preference tests for egg-spot-like

dots were carried out in February and March 2010 at ‘Kalambo

Lodge’ at the shore of Lake Tanganyika, East Africa (Zambia; S

8.6232 E 31.2). Wild-caught individuals from 14 cichlid species

were kept in ponds (ca. 162 m) filled with lake water (ca. 50 cm

high). We tested four egg-spot bearing haplochromine species

(Astatotilapia burtoni, Petrochromis polyodon, Tropheus duboisi and T.

moorii) and ten species belonging to other, more basal cichlid

lineages including mouth-brooding (Cyphotilapia frontosa,

Cyprichromis leptosoma, Ophthalmotilapia nasuta and Xenotilapia papilio)

and substrate spawning (Altolamprologus calvus, A. compressiceps,

Chalinochromis brichardi, Julidochromis dickfeldi, J. regani and

Neolamprologus sexfasciatus) representatives. Each pond contained

between 11 and 75 individuals, depending on the size of the fish

and the sampling success of the local fishermen. All ponds were

stocked with a mix of female and male individuals. As most species

under study do not show sexual dimorphisms, the exact sex ratio

could not be determined. To the 14 species, we presented five

conspicuous color dots (yellow, orange, red, green, and blue),

which were arranged in a pentagonal shape on a transparent foil

(Figure 3A). Two sets of foils with different arrangements of dots

were used. After placing the foil on the ponds’ grounds, we waited

until the first individual approached and pecked at one of the dots.

Four observers then counted the number of pecks for a period of

five minutes. If one individual stayed at one spot and pecked at it

repeatedly, it was counted as one strike only. We first performed a

goodness-of-fit test to examine the existence of a preference for

certain colors within species (all species preferred some colors over

others; p,0.001; Table S1). The color preference within each

species was then determined using a series of binomial tests (Table

S2) and subjected to an ancestral character state reconstruction.

To this end, we used a phylogenetic tree derived from a maximum

likelihood analysis based on mitochondrial sequence data (NADH

Dehydrogenase Subunit II gene; 1047 bp; [1,35]). Preference for

the colors blue, green, yellow, orange and red were coded as

numbers and we allowed for multiple characters states in species

that did not show a significant preference for only one color.

Ancestral color preferences were reconstructed with parsimony as

implemented in Mesquite (vers. 2.74, [36]). We would like to note

here that it is essentially impossible to perform such an experiment

within the lake itself, as there are too many species and interactions

between species; also, we would never find so many individuals of

the same species together. It is also important to note that we were

not able to test P. multicolor in the wild, as this species does not

occur within Lake Tanganyika.

Laboratory experiments. Since the color-dot preference

tests in the field could potentially be influenced by pseudo-

replication within ponds, we repeated this experiment in the lab

using three available lab strains and computer animations. Three

species (Pseudocrenilabrus multicolor, 10 males and 10 females;

Astatotilapia burtoni, 11 males and 9 females; Julidochromis ornatus, 9

males and 11 females) were tested for color preference under

controlled laboratory conditions, allowing assessing individual fish

and males and females separately. To this end, five colored spots

(yellow, orange, red, green, and blue; diameter: 1 cm) were

arranged circularly on neutral grey background in a computer

animation, displaying a simultaneous circular movement. Two

animations were designed to randomize the initial position of the

five color dots. The focal fish was introduced into an aquaria tank

(60630630 cm) and left for 30 min before the start to acclimatize.

Then the animation was presented to the focal fish via a computer

screen (see above), placed in front of the experimental tank. The

behavior of the focal fish was recorded for 1 hour with a video-

camera and analyzed with the software iMovieH. Thirty minutes of

behavior after the first reaction were analyzed and two parameters

were recorded: the number of times the focal fish pecked each

colored dot and number of times the focal fishes followed each

colored dot. The percentage data was angular-transformed and

analyzed with the statistics software R, applying a Friedman test

and a series of Wilcoxon signed-rank tests (with and without

Bonferroni correction; Table S3). Sex differences were tested

through Wilcoxon rank-sum tests.

Supporting Information

Figure S1 Two-way choice tests in Pseudocrenilabrus
multicolor. (A) Scheme of the experimental set-up consisting of

two outer tanks (40624624 cm) adjacent to a central tank

(60630630 cm). Each male tank (outer tanks) was equipped with

a plastic perforated shelter, while the central female tank was

equipped with three shelters: two shelters were placed next to each

outer male tank and one shelter was placed in the middle of the

tank. In this setup the females had the possibility to communicate

visually with the two different males at the left and right extreme of

their central tank (12 cm preference zone). Only visual commu-

nication was permitted. (B) Results from the ‘fin-clipping’

experiment, in which P. multicolor females were given the choice

between a male where the red fringe at the anal fin was removed

A Sensory Bias for Egg-Spots in Cichlid Fishes

PLoS ONE | www.plosone.org 6 October 2011 | Volume 6 | Issue 10 | e25601



by fin-clipping and a size-matched control male that was fin-

clipped at the dorsal fin. Females did not show any preference.

(PDF)

Table S1 Color-dot preference tests in ponds. Preferred colors

for each species are indicated.

(PDF)

Table S2 Color-dot experiments in ponds. P-values resulting

from binomial tests.

(PDF)

Table S3 Laboratory color-dot preference test. P-values were

calculated from percentage data with arcsine transformation and

are presented with and without Bonferroni correction for

Astatotilapia burtoni (A), Pseudocrenilabrus multicolor (B) and Julidochromis

ornatus (C).

(PDF)

Movie S1 Female choice experiments in Pseudocrenilabrus multi-

color using computer animations.

(MOV)
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