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ABSTRACT

The carotenoid trade-off hypothesis states that diet-derived ca-
rotenoids are traded off among competing physiological de-
mands, but this statement is rarely tested in ornamented fe-
males. In this study, reverse sexually dimorphic convict cichlids
(Amantitlania nigrofasciata) were fed diets containing carot-
enoid supplementation at three biologically relevant levels for
12 wk. This treatment was followed by spectral, microscopic,
and chemical analysis to determine how females allocated the
pigments to tissues and how those decisions affected their ven-
tral patch coloration. Yellow coloration of the integument in-
creased with carotenoids in the diet, as did carotenoids de-
posited in ovaries, but diet did not change carotenoid allocation
to skin. The results of this study suggest that females have the
ability to modulate their expression of yellow coloration via an
alternative coloration strategy. Gonadosomatic index and tank
environment were also related to ventral patch color, sup-
porting previous behavioral work highlighting the importance
of social selection in reinforcing signal honesty.

Introduction

Melanins, pterins, and carotenoids are the three types of pig-
ments used in integument coloration of vertebrates (Ferrer et
al. 1999; Grether et al. 2001; Steffen and McGraw 2007), but
while both melanins and pterins can be synthesized by animals,
carotenoid pigments must be obtained from the diet (Palmer
1922; Goodwin 1984; Alonso-Alvarez et al. 2008; Vinkler and
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Albrecht 2010). Keratin-based or purine-based structural color
can also contribute to coloration in some taxa (McGraw et al.
2011). The contributions of multiple color-producing factors
may be difficult to disentangle in studies of animal ornamen-
tation (Grether et al. 2004b).

Carotenoid pigments are the focus of many studies of animal
ornamentation because they may also function as antioxidants
and immunostimulants (Mougeot et al. 2010; Perez-Rodriguez
et al. 2010; McGraw et al. 2011). The carotenoid trade-off
hypothesis states that alternative physiological demands for ca-
rotenoids, such as immunity and antioxidant protection, can
reinforce the honesty of carotenoid-based signals because only
healthy animals can afford to allocate carotenoids to orna-
mentation (Lozano 1994). As a result, condition-dependent
ornamentation can indicate competitive ability or mate quality
(Andersson 1994; Cotton et al. 2004). Carotenoid-based color
should correlate with immune status, which has been dem-
onstrated in a wide range of birds and fish, including guppies
(Poecilia reticulata; Grether et al. 2004b), Siamese fighting fish
(Betta splendens; Clotfelter et al. 2007), greenfinches (Carduelis
chloris; Aguilera and Amat 2007), and blackbirds ( Turdus me-
rula; Baeta et al. 2008). Recent studies also support the premise
that carotenoids are important antioxidants in threespine stick-
lebacks (Gasterosteus aculeatus; Pike et al. 2007, 2010), although
the antioxidant role in birds may have been overstated previ-
ously in the literature (Costantini and Moller 2008; Perez-Rod-
riguez 2009).

The carotenoid trade-off hypothesis also predicts that or-
namented females will have a greater demand for carotenoids
than their male counterparts if females need to also allocate
carotenoids to their eggs (Fitzpatrick et al. 1995). In most cases,
carotenoids in egg yolks confer fitness benefits to the parents
by fortifying offspring health, growth, or number. Birds who
place more carotenoids into their egg yolks produce larger off-
spring or offspring that survive better (Haga et al. 2008; New-
brey and Reed 2009), but the role of egg carotenoids in fishes
is more variable. There is no link between egg carotenoid con-
tent and offspring survival or quantity in two-spotted gobies
(Gobiusculus flavescens; Svensson et al. 2006) or guppies
(Grether et al. 2008). In other fishes, a relationship exists be-
tween carotenoids in eggs and parental fitness: carotenoid con-
tent of eggs improves total egg and offspring quantity in striped
jack (Pseudocaranx dentex; Vassallo-Agius et al. 2001) and en-
hances both offspring survival and offspring quantity in yel-
lowtail (Seriola quinqueradiata; Verakunpiriya et al. 1997).

If the demands of ornamentation, somatic maintenance, and
reproduction cannot be met by increased dietary carotenoid
levels, ornamented females may evolve strategies to decrease
carotenoid demands. For example, bird species often vary the
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carotenoid content of their eggs depending on laying order or
environmental factors (Torok et al. 2007; Newbrey et al. 2008).
Female two-spotted gobies (Svensson et al. 2005) and straight-
tailed razorfish (Xyrichtys martinicensis; Baird 1988) have
evolved a patch of translucent abdominal skin, allowing egg
pigmentation to contribute to integument reflectance, while
endogenously produced pterins are found to be the main pig-
ments in the orange throat patches of female striped plateau
lizards (Sceloporus virgatus; Weiss et al. 2011). Comparatively
few studies to date have considered the carotenoid trade-off
hypothesis in ornamented females, so we do not yet know the
range of strategies employed by females to reduce the cost of
visual signaling.

The question of how ornamented females allocate their
dietary carotenoids is the focus of this study. We tested this
question in Central American convict cichlids (Amantitlania
nigrofasciata) using a three-level diet manipulation and high-
performance liquid chromatography (HPLC) to determine the
composition of the yellow ventral patch coloration and com-
pare carotenoid amounts in integument and ovaries. Convict
cichlids have been widely used in studies of physiology (Earley
et al. 2004), sexual dichromatism (Noonan 1983; Beeching et
al. 1998), effects of ultraviolet light exposure on growth (Fid-
hiany and Winckler 1999), mate choice (Beeching and Hopp
1999; Gumm and Itzkowitz 2007; Leese et al. 2010), aggression
(Earley et al. 2006), and parental care (Lavery and Reebs 1994;
Wisenden 1995; Wisenden et al. 1995; Galvani and Coleman
1998; Gagliardi-Seeley and Itzkowitz 2006). Several forms of
sexual dimorphism occur in convict cichlids, including differ-
ences in color pattern (Noonan 1983), behavior (Mackereth
and Keenleyside 1993), body size (McKaye 1977), and fin mor-
phology (Paysan 1977). Most notably, sexually mature female
convict cichlids have a yellow ventral patch that does not occur
in males (fig. 1).

Convict cichlids are an excellent system in which to inves-
tigate the carotenoid trade-off hypothesis because the ornament
occurs only in females. To date, there is no evidence that the
yellow ventral patch is sexually selected by males. Instead, in-
trasexual social selection has been posited as the driving force
behind female convict cichlid ornamentation (Beeching et al.
1998). In a previous study, increased dietary carotenoids in-
creased the number of individual colored “flecks” in the ventral
patch area of domestic female convict cichlids (Jackson 2003),
but no chemical analyses of pigments were performed. It is still
unclear whether the yellow ventral patch of this species is ca-
rotenoid based or whether it is condition dependent.

In this study, we hypothesized that a high level of carotenoids
in the diet would allow females to meet all of their physiological
demands but that a moderate dosage would force females to
choose between allocating their carotenoids to integument or
eggs. If this is the case, we predict that control and moderate
diet females will show a decrease in coloration and carotenoid
content of the integument paired with a concomitant increase
in carotenoids in ovaries. If females can maintain coloration
or pigment amounts in tissues independently of diet, this sug-
gests that convict cichlid females may have evolved an alter-

Figure 1. Female convict cichlid (Amantitlania nigrofasciata) showing
sex-specific ventral coloration. 4, Section of integument that was sub-
jected to high-performance liquid chromatography is outlined in the
square. b, Spectroscopic analysis was performed on the area inside the
circle according to the methods outlined in the text. ¢, Irregular outline
shows an example of how the area of the ventral patch was measured
using scientific image-processing software. A color version of this figure
is available in the online edition of Physiological and Biochemical
Zoology.

native strategy to reduce their demands for carotenoid pig-
ments.

Methods
Diets and Animals

Three treatment levels were fed to female Amantitlania nigro-
fasciata for 12 wk, which is adequate time to produce carot-
enoid-based color changes in fishes (Amar et al. 2004; Lin et
al. 2010). The base recipe for all diets was a modified H440
diet composed of nutrient-free gelatin-dextrin-cellulose (Halver
1989; Kodric-Brown 1989) and a multivitamin premix (Pfizer,
New York). After combining all the ingredients for the H440
base over heat, carotenoids were added and mixed thoroughly.
Each diet treatment was refrigerated overnight and later pro-
cessed manually into small chunks for storage at —80°C. Small
batches of the diets were moved to 4°C for feeding each week
to prevent carotenoid oxidation. No additional carotenoids
were added to the control diet. Both the moderate- and high-
carotenoid-supplemented diets contained lutein, zeaxanthin,
and (3-carotene from marigold (GNC, Pittsburgh, PA). The
high-carotenoid diet contained, in addition to the above ca-
rotenoids, a high dose of §-carotene (Sigma-Aldrich C9750).
Although the high group contained a concentration of carot-
enoids that was an order of magnitude higher than the mod-
erate group, the dosage was within the range used in other
studies of fish color (Garner et al. 2010) and within the natural
range of carotenoid availability found in algae and aquatic in-
sects of rocky freshwater habitats (Matsuno et al. 1999). Cich-
lids were fed to satiation twice daily, and any food remaining
in the tank 10 min after the fish had stopped eating was re-
moved with a dip net. HPLC analysis of the diets determined
that the control diet contained trace levels of carotenoids (<1
ng g '), the moderate treatment contained 26.51 ng g~ ' ca-
rotenoids, and the high diet contained 23 ug g™' carotenoids.

Laboratory-reared F, offspring from multiple pairs of wild-
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Figure 2. Principal component (PC) eigenvectors, or loadings. Three eigenvectors explained 97.54% of the variation in fish reflectance. PC1
explains that most of the variation in fish color (76.31%) is between 425 and 615 nm (violet-orange), with 470-510 nm being the area of
greatest influence. PC2 indicates that variation in fish reflectance between 475 and 650 nm (green-orange) was the second-most variable (16.04%)
aspect of the data, with the area between 570 and 610 nm (yellow) showing the most influence. The PC3 vector represents the variation in
long (red) versus short (indigo) wavelengths. PC3 variation accounted for 5.19% of the total.

caught A. nigrofasciata (Rio Cabuyo, Guanacaste Province,
Costa Rica) were randomly assigned to control-, moderate-, or
high-diet groups. All fish were sexually mature females weighing
between 1.75 and 6.0 g, and none of them had produced eggs
previously. Prior to the beginning of the experiment, each fish
was individually marked with an injection of silastic elastomer
(Northwest Marine Technology, Shaw Island, WA), which is
commonly used to mark individual small fish, amphibians, and
invertebrates (Buckley et al. 1994; Godin et al. 1996; Frederick
1997).

Due to space limitations, subjects could not be housed in-
dividually. Fish were housed in unisex groups of 10 in 38-L
tanks on a 12L: 12D photoperiod at 25° = 1°C (two tanks per
diet). Convicts will attack and kill each other if housed at low
densities in the laboratory, so a high density was used to de-
crease aggression. A 50% water change using deionized water
reconstituted with electrolytes and other natural solids (Kent
Marine, Franklin, WI) to a conductivity of 100 S m™' was
performed weekly or more often if needed. Filter cartridges
with activated carbon and ammonia-removing resin (Aquarium
Pharmaceuticals, Chalfont, PA) were changed weekly.

All fish were measured at the beginning of the feeding trial
(week 0) and again at the end (week 12), following light an-

esthetization in a buffered solution of 1 g L' tricaine methane
sulfonate (MS-222, Western Chemical, Ferndale, WA). Fish
were individually weighed and photographed using a Nikon P-
90 digital camera on a tripod under controlled lighting. A white
standard and a metric ruler were in each frame for reference.
Using Image] software (Rasband 1997), we measured standard
body length, total body length, and ventral patch area (fig. 1¢)
from the images. All animal care and use protocols were ap-
proved by the Institutional Animal Care and Use Committee
at Ambherst College.

Spectral Analysis of Integument Color

At weeks 0 and 12, integument color was measured using a
UV-VIS spectrophotometer (Ocean Optics, USB400, Dunedin,
FL). Integration time was set by the probe software, and the
boxcar smoothing was set to 50. Dark and white standards
(Labsphere, North Sutton, NH) were used as references for 0%
and 100% reflectivity. Reflectance was recorded using a 400-
pm reflection probe (Ocean Optics R400-7) held at a 45° angle,
5 mm from the sample (Lahti 2006; Clotfelter et al. 2007).
Readings were collected on the ventral patch region between
the fourth and fifth stripes from the anterior (fig. 1b). We
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Figure 3. One of the potential drawbacks of principal components (PC) analysis is that some eigenvectors may not have a biologically meaningful
interpretation (Jolliffe and Ebrary 2002), so we discuss the changes in PC values with respect to the average reflectance for fish in each diet
group. Yellow ventral patches were composed of multiple peaks, with the largest at 540 (green) and 615 nm (yellow-orange). Peak height was
enhanced with carotenoid supplementation, although peak location remained constant across the diets. The shaded ribbon represents the

standard error.

restricted color and HPLC analysis in this study to the left side
of each fish because a pilot experiment found that reflectance
of left and right flanks is significantly correlated (Pearson’s
r = 0.65, n = 51, P<0.0001).

Tissue Analysis

On week 12, following reflectance recordings, each fish was
euthanized in a buffered solution of 2 g L™' MS-222. Liver and
ovaries were aseptically removed and weighed (£ 0.001 g; Den-
ver Instrument balance). Gonadosomatic index (GSI) was cal-
culated as (ovary mass/body weight) x 100 (Hassanin et al.
2002). A 1.5-cm’ epidermal sample was taken from the ventral
patch area (fig. 1¢) to be weighed and stored at —80°C until
carotenoid extraction. Extractions were performed under ni-
trogen gas in a darkened fume hood at 4°C to prevent carot-
enoid oxidation. Carotenoid extraction and HPLC methods
used in this study have been described previously (McGraw
and Ardia 2003; Clotfelter et al. 2007). Pterins were extracted

and analyzed according to methods described by Steffen and
McGraw (2007).

To detect iridophores, integument from the right side of each
fish was rinsed gently with ethanol and hexane and then
mounted on glass slides using Shandon xylene substitute
mountant (no. 1900231, Thermo Scientific, Waltham, MA). A
coverslip was applied and microscopic evaluation of skin per-
formed immediately. A movable light source allowed for sam-
ples to be lit from multiple angles (Meadows et al. 2011).

Diet Analyses

Samples from each diet were taken from freshly thawed fish
food stock each week. These were weighed, frozen with liquid
nitrogen, ground to powder, and extracted in hexane and ac-
etone. Deionized water and sodium sulfate decahydrate were
added to the solvent to force remaining nonpolar molecules
into the solvent layer. Samples were vortexed vigorously, and
the solvent layer was removed and dried under nitrogen. Sam-
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Figure 4. Fish that received moderate- or high-carotenoid diets allo-
cated significantly more carotenoids to ovaries. Error bars represent
the standard error of the mean. A color version of this figure is available
in the online edition of Physiological and Biochemical Zoology.

ples were resuspended in 82 : 18 hexane : acetone mobile phase
and run on Waters 600 HPLC at ambient temperature at a rate
of 1 mL min~" with a Waters dual-wavelength absorbance de-
tector set to 474 nm. The column was 150 x 4.6 mm Luna
3u Silica (Chromadex 00F-4162-E0) with a 4 x 3.0-mm silica
guard column (Chromadex AJ-4348).

Statistical Analysis

Analysis was conducted using R software (R Development Core
Team 2010). Reflectance data were binned into 5-nm incre-
ments and averaged over 100 scans. Raw data were trimmed
to the visible spectrum of A. nigrofasciata (400—700 nm; Jackson
2003) and centered before analysis (Cuthill et al. 1999). Re-
flectance spectra were compressed using principal components
analysis (PCA). This process does not make any assumptions
about the observer and can account for a large amount of
variation in a data set with only a few components (Jolliffe and
Ebrary 2002; Hill and McGraw 2006).

In brief, PCA calculates orthogonal eigenvectors to account
for observed variance in a multidimensional space. Eigenvectors
are calculated in order of decreasing variance explained until
the cumulative variance explained equals 100% (an eigenvector
calculated for each variable). The number of eigenvectors re-
tained depends on the goals of the investigation—many eco-
logical studies use the first two or three vectors (Lahti 2006;
Clotfelter et al. 2007; Budaev 2010), whereas commercial color
technology research may report as many as six (Tzeng and
Berns 2005). Eigenvalues (also called PC values) represent the
residual of each datum on the eigenvector, meaning that they
cannot be compared across data sets or without a representation
of the eigenvector (or “loading,” a term borrowed from factor
analysis).

Only eigenvectors that could explain >1% of the variance

were retained in this study (fig. 2). Week 12 PCs were subtracted
from week 0 components to determine the amount and direc-
tion of color change for each female. Analysis of carotenoid
content of tissues was compared to PC values at week 12 only
because this was the time at which tissue samples were collected.

A repeated-measures ANOVA was used to examine the effect
of supplementation on integument color, tissue carotenoids,
and patch area. We included tank as a random effect to account
for tank effects. Tukey’s tests were performed using the mult-
comp package for R (Hothorn et al. 2008). Multiple regression
compared relationships between variables within diet treat-
ments, and—due to influential outliers that could not be re-
solved with transformation robust—regression was used to test
the relationships between GSI and tissues. Log transformation
was applied when residuals were not normally distributed. P
values were considered significant when P < 0.05.

Results

The experiment began with 20 fish in each diet group, for a
total of 60 females. In tests where n< 60, data were missing
because fish lost their silastic elastomer tags or samples were
lost during the carotenoid extraction process.

Coloration Analysis

For PCl, fish fed moderate carotenoids gained reflectance be-
tween 420 and 615 nm (violet-orange)—significantly more than
either controls or high-dose fish (E ,; = 31.35, P<0.01; fig. 3).
There was also a marginally significant effect of housing
(E,,; = 3.37, P = 0.04). But when Tukey’s tests were applied,
the control and supplemented diets were not significantly dif-
ferent for PC1 (P> 0.05 for all contrasts).

Both supplemented groups gained reflectance between 475
and 650 nm (PC2, green-orange) compared to control animals
(E,,; = 37.73, P<0.001; fig. 3), and again there was a significant
tank effect (E ,; = 54.40, P<0.001). Tukey’s tests showed that
both supplemented groups had significantly increased reflec-
tance over controls in this spectral region (P < 0.001 for both)
but that moderate- and high-diet groups were not significantly
different from each other (P> 0.05).

ANOVA detected an effect of treatment for PC3 (E ,; =
31.21, P<0.001), but there was no effect of housing (E ,; =
0.16, P>0.05). Tukey’s tests reported that moderate-diet fish
increased their reflectance above 650 more than controls or
high-diet fish (P<0.05 for both), but control- and high-diet
fish did not significantly differ from each other (P> 0.05).

Integument and Ovary Analysis

We were unable to achieve sufficient separation with HPLC to
identify individual carotenoid types due to esterification, so
total carotenoids are reported. Integument carotenoids did not
differ among diet groups (F, ;s = 048, P = 0.62), but fish in
moderate and high diets had significantly more carotenoids in
ovaries (F, ,, = 3.66, P = 0.03; Cohen’s d = 0.89 and 0.90; fig.
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Figure 5. Carotenoids in ovaries are linked to the amounts found in the integument. Treatment group did not affect the slope of the relationship.
Carotenoid amounts were log transformed to achieve normality, and the shaded area represents the standard error.

4). Skin reflectance was not significantly related to gonad ca-
rotenoids (¢, ,, = 0.80, P = 0.43), but skin carotenoids were
negatively correlated with gonad carotenoids (¢, ,, = —2.04,
P = 0.04; fig. 5). Supplementation did not affect GSI (F, ,s<
2.53, P> 0.09). GSI was not related to any aspect of reflectance
(P>0.05) but was significantly related to carotenoid content
of both tissue types tested. Increasing GSI increased carotenoid

allocation to ovaries (¢, ,, = 6.72, P = 0.001; fig. 6), as well as
decreased allocation to integument (¢, ,, = —3.48, P = 0.001;
fig. 6).

For a subset of 12 fish from the moderate and high diets,
the pterin pigment content of skin was determined. Pterin con-
tent of skin was trace or undetectable (mean, 0.71 = 0.19 ng
¢g™') and not significantly different between treatments
(E,, = 0.92, P = 0.36). Iridophores, chromophores, and me-
lanocytes were observed in opaque integument filets under mul-
tiangle light microscopy (fig. 7) but were not quantified in this
experiment.

Effects of Fish Size

The change in area of the ventral patch was not affected by
carotenoid supplementation (P> 0.05), but patch area was pos-
itively correlated with fish mass (R*> = 0.54, df = 47, P<
0.001). There were no significant treatment effects on body mass
(B, 4 = 1.26, P = 0.29), nor was there a relationship between
fish mass and skin carotenoids (P> 0.24 for all), but fish mass
was a significant positive predictor of ovary carotenoids
(R* = 0.35, df = 43, P<0.001). Large control fish lost more

yellow coloration (PC2) than their smaller counterparts within
the same treatment (R* = 0.27, df = 24, P = 0.008), but this
did not occur in either supplemented group (moderate carot-
enoids: R* = 0.12, df = 8, P = 0.37; high carotenoids: R*> =
0.14, df = 13, P = 0.19).

Discussion

The first aim of this study was to show that the coloration of
the ventral patch is mediated by dietary carotenoids. In support
of this, we found that carotenoid content of diets affected the
visible color of the fish, and we found carotenoids in integu-
ment with HPLC. Presence of carotenoids in the diet increased
fish reflectance in the green, yellow, and orange portion of the
spectrum as shown by increased PC2 values. In the nonsup-
plemented group, fish lost yellow coloration as a result of ca-
rotenoid deprivation. Although initially we detected an effect
of diet on PC1 (green-orange) using ANOVA, after pairwise
testing, PC1 was not significant. This could have occurred be-
cause of some initial differences in coloration between the
groups or because melanin-based pigmentation is the main
source of individual variation detected by the PCA (Cuthill et
al. 1999).

Moderate carotenoid group fish also showed a significant
increase in reflectance above 650 nm (PC3), as shown in figure
3, over the high and control groups. High doses of 3-carotene
may have suppressed reflectance of long wavelengths (red) and
shorter wavelengths (blue) while increasing midrange wave-
lengths (green-orange), resulting in an overall decrease in PC3.
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Figure 6. Carotenoid allocation to integument (top) and ovaries (bottorn) was closely related to gonadosomatic index (GSI). Fish nearing
breeding readiness may reallocate their pigment resources to offspring rather than integument, but this trend was not accompanied by a decline
in color. Carotenoid amounts were log transformed to achieve normality. Shading represents the standard error.

This leaves the moderate group as the only diet to increase
reflectance in the spectral region above 650. While the moderate
group changed in the direction we predicted, the high group
did not. This could be due to variations in melanophore di-
lation, skin thickness, mucus layer, or other physical changes
in the integument. Because 650 is above the range at which
carotenoids would reflect, we do not believe that PC3 is in-
formative for the purposes of this work.

HPLC results indicate that carotenoids are the main pigment
of yellow ventral patches, but carotenoids failed to account for
a significant portion of the variance in fish color. As predicted,
fish that ate both the moderate and high diets placed signifi-
cantly more carotenoids in their ovaries than fish on the control
diet. Carotenoid content in integument was also linked to ovary
carotenoids, which is consistent with previous findings in fe-
male fishes (Svensson et al. 2006; Grether et al. 2008). We did
not find that integument reflectance was linked to carotenoids
in the ovaries, which supports previous work suggesting that
the yellow ventral patch is not sexually selected by males
(Beeching et al. 1998).

Patch coloration was not related to GSI, but carotenoid de-
position in integument and ovaries appears to respond strongly
to gonad maturation. As gonads mature, GSI increases, and so
does the concentration of carotenoids. Gonad maturation was

also associated with a decline in carotenoid allocation to the
integument, and both of these effects appeared independently
of diet group. This supports our alternate hypothesis that fe-
males have evolved some means of reducing the costs of
carotenoid-based ornamentation in the integument, but the
adaptive importance of our conclusions rest on the assumption
that yolk carotenoids are important to offspring fitness. As
noted in the introduction, this finding is variable in fishes.
Multigenerational observations are currently under way in our
laboratory to determine how yolk carotenoids might enhance
offspring fitness in convict cichlids.

Fish could alter their coloration without changing the
amount of carotenoids in their integument by aggregating or
dispersing xanthophores (Leclercq et al. 2010), which can be
triggered by various environmental factors, such as stress and
light (Gray et al. 2011). However, any handling stress the fish
may have experienced would have been present across all of
the groups, and previous work does not suggest a link between
dietary carotenoids and chromophore dilation. We also did not
detect any indicators of long-term physiological stress in terms
of reduced growth or GSI as a result of the diet treatment. The
possibility that gonads are directly visible through a translucent
patch of skin (Baird 1988; Svensson et al. 2009) can also be
dismissed; convict cichlids possess an opaque gray or silver
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Figure 7. Female convict cichlid integument at 40 x magnification.
Melanin-based coloration regions (a), iridophores (b), and chromo-
phores (¢) interact to produce convict cichlid ventral patch color. In-
tegument was mounted on a slide in this photograph; the pigmented
layer lining the peritoneal cavity of convict cichlid skin rules out the
possibility that gonads produce ventral patch color by showing through
the skin. A color version of this figure is available in the online edition
of Physiological and Biochemical Zoology.

lining of the peritoneal cavity that conceals all of the organs,
including the gonads, from observation through the skin.

Iridophores can produce color in fishes, lizards, amphibians,
and other taxa either through interactions with pigments
(Grether et al. 2004b) or by altering the angle, dispersion, and
orientation of purine platelets to produce matte white, silver,
blue, brown, or yellow coloration in addition to others (Oshima
and Kasai 2002; Bagnara et al. 2007; Mathger et al. 2009). Under
magnification, yellow-green light-reflecting iridophores were
visible within the ventral patch region of convict cichlids. Irid-
ophores were present on other areas of fish skin but appeared
blue or blue-green in color. We were unable to quantify irid-
ophores and their contribution to the spectral readings because
these calculations require a priori knowledge of the underlying
structure of the skin layers and any attenuating or amplifying
effects of other color-producing molecules (Grether et al.
2004a). Further study will be necessary to determine how struc-
tural coloration is affected by dietary carotenoid availability in
convict cichlids, but the results presented here are similar to a
recent finding in common lizards (Lacerta vivipara) in which
iridophores control chromatic variation of a carotenoid-based
ornament (San-Jose et al. 2013).

Carotenoid limitation could be responsible for the relation-
ship between increased body mass and decreased yellow col-
oration in the control-diet group. Larger animals may require
more carotenoids in order to maintain the same tissue carot-

enoid concentrations as smaller fish, as signal detection theory
predicts that signalers with larger ornaments experience an ex-
ponential, rather than linear, demand for color-reflecting mol-
ecules (Weber’s law; Barlow and Mollon 1982). In addition, we
found that larger fish from all the treatment groups placed
more carotenoids in their ovaries than smaller fish. It is possible
that larger fish became carotenoid limited before their smaller
counterparts because their demand increases exponentially with
respect to their body size.

However, the lack of a significant effect of mass on skin
carotenoids casts doubt on this conclusion; it is possible that
the effect size of mass was simply too small to be detected with
our sampling methods or that social environment influences
color expression. If yellow ventral patches have an intrasexual
signaling function (Beeching et al. 1998), modulation of fish
color should be based on social interactions. Furthermore, irid-
ophores have been shown to be under neurological control and
play an important role in agonistic and reproductive behaviors
in squid (Lolliguncula brevis; Hanlon et al. 1990); the same
could be true for convict cichlids. The importance of social
environment in color expression is further supported by the
detection of significant tank effects in the coloration analysis.

This study showed that dietary carotenoid content increases
ventral patch coloration, which is not related to carotenoid
content of the integument. Also, gonads sequestered caroten-
oids as they matured and reduced allocation of carotenoids to
the skin independently of the diet groups. Yellow coloration
may contain information about an individual’s fitness or qual-
ity, but we cannot say that yellow ventral patches are condition
dependent. This would require evidence for a proximate mech-
anism and a cost of signal production, which we did not detect.

This study found support for a strong influence of social
environment on the expression of the ventral patch. Iridophores
may perform the role of decreasing the cost of carotenoid al-
location to the integument, as carotenoid content of skin did
not account for a significant portion of variance in spectral
reflectance. The results presented here do not support our initial
hypothesis that ornamented females experience a high demand
for carotenoids but instead offer some support for our alter-
native hypothesis that females may evolve a strategy to reduce
the cost of carotenoid allocation. From a broader perspective,
our results raise interesting questions about the importance of
competition for resources as a selective pressure for female
ornamentation, as well as how honesty is maintained. Future
studies should address the social aspect of convict cichlid ven-
tral patch color and consider the influence of structural color
on ventral patch expression.
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