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Abstract
Variation in immunity is influenced by allocation trade-offs that are expected to change

between age-classes as a result of the different environmental and physiological conditions

that individuals encounter over their lifetime. One such trade-off occurs with carotenoids,

which must be acquired with food and are involved in a variety of physiological functions.

Nonetheless, relationships between immunity and carotenoids in species where these

micronutrients are scarce due to diet are poorly studied. Among birds, vultures show the

lowest concentrations of plasma carotenoids due to a diet based on carrion. Here, we inves-

tigated variations in the relationships between innate immunity (hemagglutination by natural

antibodies and hemolysis by complement proteins), pathogen infection and plasma carot-

enoids in nestling and adult griffon vultures (Gyps fulvus) in the wild. Nestlings showed

lower hemolysis, higher total carotenoid concentration and higher pathogen infection than

adults. Hemolysis was negatively related to carotenoid concentration only in nestlings. A dif-

ferential carotenoid allocation to immunity due to the incomplete development of the

immune system of nestlings compared with adults is suggested linked to, or regardless of,

potential differences in parasite infection, which requires experimental testing. We also

found that individuals with more severe pathogen infections showed lower hemagglutination

than those with a lower intensity infection irrespective of their age and carotenoid level.

These results are consistent with the idea that intraspecific relationships between innate

immunity and carotenoids may change across ontogeny, even in species lacking caroten-

oid-based coloration. Thus, even low concentrations of plasma carotenoids due to a scav-

enger diet can be essential to the development and activation of the immune system in

growing birds.

Introduction
Immunity, defined as the capacity to fight or control parasitic or pathogenic infection, is one of
the major physiological mechanisms regulating survival and a crucial determinant of fitness in
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animals [1]. Developing an immune response entails energetic costs as well as resource-based
trade-offs and life history trade-offs [1–2]. Because optimal trade-offs can change across an
individual’s lifetime as a result of variation in environmental and physiological factors, deter-
mining whether age influences the relationship of the immune system with other physiological
factors can yield important insights into the mechanisms shaping immunity, and how immune
responses are related to other life-history traits.

One proximate trade-off based on the allocation of limited resources to immunity occurs
with carotenoids, which, for vertebrates, must be acquired through diet [3] thus being limited
by the environment and/or physiological uptake [4]. Carotenoids are large lipophilic molecules
that, in addition to their role as colorants, have diverse biological functions due to their immu-
nostimulant and antioxidant properties [5–8]. Consequently, a trade-off between color signals
and several physiological functions has been assumed [9]. Carotenoids can modulate many
traits and processes of the immune system by influencing gene expression, protecting vulnera-
ble cells and tissues from reactive oxygen species generated during immune responses and
notably enhancing lymphocyte proliferation and cytotoxic activity, cytokine and antibody pro-
duction, cutaneous delayed type hypersensitivity response, and phagocytic cell activity
(reviewed in [6]). Among vertebrates and particularly in birds, several studies have shown that
supplementation with carotenoids boost resistance to parasite infection [10] and stimulate
antibody production [11–12], T-cell mediated immune response [5,11,13], and levels of sys-
temic nitric oxide, which may combat infection as an intracellular signaler and pro-oxidant
[14]. Likewise, other studies found that immune activation can reduce circulating carotenoid
levels in birds [11–12, 15–19]. Taken together, these results indicate that immunity is influ-
enced by environmental and individual physiological conditions, and that mounting an
immune response can divert carotenoids from the blood stream, allowing individuals in good
condition to better afford the costs of immune defense.

Immunity has also been shown to vary ontogenetically, with younger individuals being
more exposed and vulnerable to pathogens because they are confined to nests that typically
harbor ectoparasites and other disease agents [20] and because their immune system is not yet
fully developed [21–22]. Since the ability of carotenoids to modulate the development of the
immune system begins early during embryonic and post-hatching periods [23–25], physiologi-
cal trade-offs involving carotenoids may play a key role in the achievement of individual
immunity at an early stage. Indeed, some experimental studies found that in young birds, sup-
plementation with different types of carotenoids yielded a positive effect on the immune
response [26–30] (but see [31]). Because the development of the avian immune system may
take several days or weeks after hatching and requires prior exposure to an antigen [21], young
birds must rely mainly on their innate immunity while the specificity and memory associated
with the adaptive branch fully develops [32–35]. Despite such a crucial role of innate immune
functions in early defense and individual survival, relationships between innate immunity and
carotenoids in free-living birds have been less well investigated than those involving acquired
immunity (but see [5, 7, 11] for the cellular component, and [30, 36] for the humoral compo-
nent). Particularly little attention has been paid in relation to those carotenoid interactions
comprising the humoral functions of immunity, such as hemagglutination by natural antibod-
ies and hemolysis by complement proteins, which may represent a first line of defense against
initial pathogen infection [37].

The idea that variation in immunity is influenced by carotenoid availability and the physio-
logical trade-offs involving carotenoids during development raises the question of the role that
carotenoids play in modulating innate immunity in species where these micronutrients are lim-
iting resources due to diet, e.g. carnivore animals feeding on flesh poor in carotenoids [3].
Among avian scavengers, vultures (Accipitrinidae and Cathartidae families) have been shown
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to have low concentrations of plasma carotenoids due to their diet, which is mainly based on
rotten flesh and bones of vertebrates, although carotenoids may be actively sought after as die-
tary supplements potentially used in color-signaling, immunity and other functions [38–39].
However, there is limited information about the identity and concentration of different circu-
lating carotenoids in vultures [40] and, to our knowledge, no information is available for nes-
tling vultures.

In this study we examined the potential relationships between natural variation in innate
immunity and natural variation in plasma carotenoids in adults and nestlings of a wild popula-
tion of griffon vultures (Gyps fulvus). We focused in the performance of two constitutive innate
immune functions: hemagglutination by natural antibodies and hemolysis by complement pro-
teins. Since the assessment of the ability of the immune system to mount a response against
pathogens requires the consideration of the physiological state of the individuals [25], age-vari-
ation of innate immunity in relation to plasma carotenoids was examined in respect to differ-
ences in sex, nutritional condition, physiological stress, and pathogen infection. Due to
different environmental and physiological conditions over lifetime, we predict age-class varia-
tions in the relationships between innate immunity (hemagglutination by natural antibodies
and hemolysis by complement proteins), pathogen infection and plasma carotenoids in nes-
tling and adult griffon vultures, with nestlings diverting more carotenoids from the blood
stream to innate immunity than fully-grown individuals due to their potentially higher expo-
sure and vulnerability to pathogens during the ontogeny of the immune system.

Material and Methods

Ethics statement
Our study followed ethical guidelines proposed for the Spanish Royal Decree 1205/2005 on the
protection of animals used in experiments and scientific research. The study was carried out in
accordance with permits from the Spanish Bird Ringing Centre (Permit Number: 530115), and
the regional government of Castilla y Léon (Expte: EP/CyL/282/2013) which approved all sam-
pling procedures as part of obtaining the field permit. The Spanish Ministry of Economy and
Competitiveness (Projects: CGL2009-12753-C02-01/BOS and CGL2010-15726) approved all
sampling procedures and financed the study. Vultures were captured and handled by autho-
rized personnel. Handling time was minimized to reduce stress and no vulture became injured
during capture/sampling. After manipulation vultures were released in good state where cap-
tured. Griffon vulture is not considered as endangered species in Spain.

Study area and species
The study was conducted in the distribution range of the griffon vulture in the Central Moun-
tains and associated canyons of the Castilian Highlands, in Ávila and Segovia provinces, central
Spain. The area includes a complex of cliffs and canyons where an increasing population of
griffon vultures feeds and breeds in large numbers [41–42].

The griffon vulture is a heavy (~8–10 kg), social obligate scavenger aggregating at carcasses,
breeding and roosting sites in hilly areas throughout the Palearctic region. Breeding griffon vul-
tures are year-round residents in the study area; laying begins in late December and the young
fledge from June-August [41]. Females lay one egg per clutch and both sexes are responsible
for incubation and feeding of the nestling until independence>100 days after hatching. In the
study area, griffon vultures and other scavengers are highly dependent on livestock carrion
found at carcass dumps provided by stabled livestock operations, mostly of swine and poultry
[40]. Carotenoid concentrations can vary among tissues in several livestock herbivores [43]
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and thus scavengers should ingest variable, but always low, levels of these pigments depending
on the tissue and the degree of carrion autolysis.

Adult birds are sexually monochromatic, showing a brown plumage with black remiges and
rectrices. They have a nearly bald head and neck covered with white down, the base of the neck
is surrounded by a ruff of white feathers, the exposed skin on the head and legs is grey and light
brown and the iris color varies from dark to light brown or grey. Therefore, there is no evidence
that griffon vultures allocate carotenoids to the integument. On this basis we can reasonably
assume that griffon vultures do not trade-off allocation of carotenoids between body mainte-
nance and health signaling or ornamentation.

Fieldwork procedures
During the breeding season of 2013, a sample of vulture nests was intensively monitored as
part of long-term population monitoring program [42, 44]. All observations were made by tele-
scope at distances that avoided disturbance of the birds in the colony. When nestlings were 50–
70 days old, nests were accessed with climbing gear and nestlings (n = 29) were sampled. Nes-
tling sampling was done between May 15th and June 24th. In addition, once the breeding season
ended, fully-grown vultures (n = 54) were captured using a large cage (5x8x2 m) placed near
the breeding colony and baited with livestock carcasses. Adult captures were done between
October 10th and December 4th. Both nestlings and fully-grown vultures were banded and mea-
sured for wing (±1 mm), tail (±1 mm) and tarsus length (± 0.1 mm) with rules and digital cali-
pers, respectively, and weighed (±1g) with balances. Wing length was used as a proxy of
nestling age, because this measure increase linearly over the course of development [45] and it
is relatively unaffected by environmental conditions in raptors [46–47]. Fully-grown vultures
were aged as morphologically adults (n = 47) or subadults (n = 7) according to general body
color, bill color and especially attending to the color, length and shape of ruff feathers [45, 48];
no subadults younger than two years of age were captured. Hereafter, we will refer to all full-
grown vultures as adults. A blood sample (3–5 ml) was taken from the brachial vein of nestlings
and adults, transferred to vials containing heparin and kept chilled. On the day of collection,
blood samples were centrifuged at 13 000 g for 10 min to obtain plasma, which was frozen at
-20°C until analysis. A drop of blood was used for sexing the individuals through molecular
procedures [49].

Nutritional condition, physiological stress and pathogen infection
Nutritional condition of nestlings was quantified as body mass relative to structural body size,
by calculating the scaled mass index following Peig and Green [50]. This index adjusts the
mass of all individuals to the mass they would have if they had the same body size, using the
equation of the linear regression of log10 body mass on log10 tarsus length, estimated by type-2
(standardized major axis; SMA) regression (three nestlings were excluded because of missing
mass or tarsus data; r = 0.57, lower CL = 1.15, upper CL = 4.75, α = 0.05). Because in adults
body mass and tarsus length were not correlated (F1, 52 = 0.003, r = 0.01, p = 0.95), body mass
was used as an indicator of nutritional condition (other morphological traits such as head size
and wing length were also not significantly correlated with body mass in adults, both p>0.05).

To evaluate the physiological stress of nestlings and adults, we recorded the number of fault
bars, i.e. conspicuous feather malformations consisting of translucent bands of frayed or miss-
ing vanes of feather keratin generally running perpendicular to the rachis, in the primary rectri-
ces. Fault bars have been suggested to reflect stressful environmental conditions during feather
growth, especially those related to nutritional deficiencies [51–52]. We therefore inspected all
rectrices and recorded the presence of fault bars as a proxy of stressful conditions potentially
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impairing growth and development in nestlings (four nestlings were excluded because fault
bars were not recorded). Fault bars were used as a proxy of chronic or long-term stressful envi-
ronmental conditions in adults, as tail feathers require long molting periods, even taking sev-
eral years to be fully renovated. The number of fault bars was controlled for tail length.

Pathogen infection was estimated by inspecting the oral cavity of nestlings and adults and
recording the presence/absence and number of lesions caused by Candida-like yeast. These
lesions appear as prominent white-grey or yellowish nodules of variable size and circular to
elliptic in form often extending into larger and ulcerated plaque-like areas, especially on the
tongue and less frequently on the pharynx, palate and other parts of the oral cavity. Although
this yeast and other fungi can be normal inhabitants of the upper alimentary tract of birds, the
presence of lesions from these opportunistic pathogens implies an ongoing infection [53–54]
and thus the activation of the immune system. Therefore, the number of lesions was used as a
proxy of the intensity of pathogen infection. No ectoparasites were detected during handling.

Determination and quantification of plasma carotenoids
Carotenoids were extracted from plasma samples as described previously [39, 55]. In brief, a
plasma aliquot (100 μL) was lyophilized and the carotenoid pigments were extracted from the
dry residue with 200 μL of N, N-dimethylformamide for 60 min, including sonication for 5
min every 30 min. The resulting extract was analyzed by HPLC in accordance with the proce-
dure outlined by Mínguez-Mosquera and Hornero-Méndez [56] with some modifications [39].
The chromatographic analysis was carried out on the same day of the preparation of the
extracts. All operations were carried out under dimmed light to prevent isomerization and
photodegradation of carotenoids. Concentration of plasma carotenoids is expressed in μg/mL.

Innate immunity
Immunity was assessed following the assay described by Matson et al. [57]. This assay allows
the simultaneous measurement of two constitutive innate immune functions, such as a hemag-
glutination reaction between natural antibodies and antigens, and a hemolysis reaction of exog-
enous erythrocytes, which is a function of the amount of lytic complement proteins present in
the sampled blood. Quantification is done by serial dilution of plasma samples and the assess-
ment of the dilution step at which either the hemagglutination or hemolysis reaction against
the same amount of rabbit blood cell suspension stopped. Briefly, the assay was carried out in
96-well round bottom assay plates (Corning Costar #3795). Twenty-five microliters of eight
plasma samples were pipetted into columns 1 and 2 of the plate and 25 μl of 0.01 M phosphate
buffered saline (PBS; Sigma #P3813, St Louis, MO) were added to columns 2–12. Using a
multi-channel pipette, the contents of the column 2 wells were serially diluted (1:2) through
column 11, resulting in dilutions ranging from 1 to 1/1024 and 25 μl in every well. The 25 μl of
PBS only in column 12 served as a negative control. For the assay itself, 25 μl of a 1% rabbit
blood cell suspension was added to all wells, effectively halving all plasma dilutions. Each plate
was then sealed and gently vortexed for 10 s prior to incubation during which time they were
floated in a 37°C water bath for 90 min. After incubation, plates were tilted at a 45° angle along
their long axis for 20 min at room temperature and then scanned to record the reaction of hem-
agglutination by natural antibodies. Subsequently, plates were kept at room temperature for an
additional 70 min and scanned for a second time to record complement-mediated maximum
hemolysis. Quantification of hemagglutination and hemolysis was done by assessing the dilu-
tion stage (on a scale from 1 to 12) at which these two reactions stopped (for further details on
the method, see [57–58]. In order to estimate the repeatability of hemagglutination and hemo-
lysis quantification based on scanned pictures, 10 individuals were measured 3 times by the
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same observer. Both immunity measures were highly repeatable (hemagglutination: r = 0.89,
F9, 20 = 24.23, p< 0.0001; hemolysis: r = 0.94, F9, 20 = 74.61, p< 0.0001; 58).

Data analyses
Age- and sex-related differences in plasma carotenoids and physiological state (nutritional con-
dition, physiological stress and pathogen infection) were compared using General Linear Mod-
els (GLMs) that included age-class (nestling/adult) and sex as fixed factors. In the analyses of
physiological stress, tail length was included in the models as a covariate to control for the
number of fault bars. Plasma carotenoids were tested independently and separating them by
their nature (xanthophylls or carotenes). Yet, since carotenoids were highly inter-correlated
(Table 1) we estimated total plasma carotenoids as the sum of all of them and use this variable
in the following analyses.

The hemolysis reaction of complement proteins (hereafter hemolysis) and hemagglutina-
tion reaction by natural antibodies (hereafter hemagglutination) were not inter-correlated
either in nestlings (Spearman r = -0.007, p = 0.97, n = 29) or in adults (Spearman r = -0.001,
p = 0.99, n = 54). To test for potential correlations between innate immunity and total plasma
carotenoids, GLMs were performed. Initial models included immunity as the dependent vari-
able, total plasma carotenoids as covariate, sex and age-class as fixed factors and the second
grade interactions between carotenoids and age-class/sex. Initial models also included as covar-
iates physiological stress (number of fault bars) and pathogen infection (number of lesions
caused by Candida-like yeast) in order to control for individual physiological state. Nutritional
condition was calculated differently in nestlings (scaled mass index) than in adults (body mass)
and therefore, their comparison was not included in these analyses. Rather, we included body
mass and tarsus length as covariates. In the hemolysis reaction of complement proteins there
was a significant interaction between age-class and total plasma carotenoids (see “Results”);
because no relationship in one group is sufficient to get an interaction, we examined the rela-
tionship between hemolysis reaction and plasma carotenoids with GLMs performed separately
for nestlings and adults. In these initial models we also introduced nutritional condition and

Table 1. Correlation between plasma carotenoids in nestling (n = 29) and adult (n = 54) griffon vultures. Reported values are Pearson correlation
coefficients. Significant correlations (P < 0.05) are shown in bold.

Nestlings (n = 29) 1 2 3 4 5 6 7

trans-Zeaxanthin (1) 1.00 0.98 0.98 0.89 0.84 0.60 0.82

trans-Lutein (2) 1.00 0.99 0.89 0.87 0.69 0.89

isomers of Lutein and Zeaxanthin (3) 1.00 0.92 0.88 0.69 0.88

α -Cryptoxanthin (4) 1.00 0.83 0.64 0.79

β -Cryptoxanthin (5) 1.00 0.84 0.90

Echinenone (6) 1.00 0.84

β -Carotene (7) 1.00

Adults (n = 54)

trans-Zeaxanthin (1) 1.00 0.97 0.97 0.69 0.81 0.57 0.76

trans-Lutein (2) 1.00 0.98 0.67 0.73 0.59 0.83

isomers of Lutein and Zeaxanthin (3) 1.00 0.70 0.76 0.63 0.83

α -Cryptoxanthin (4) 1.00 0.57 0.65 0.61

β -Cryptoxanthin (5) 1.00 0.51 0.57

Echinenone (6) 1.00 0.74

β -Carotene (7) 1.00

doi:10.1371/journal.pone.0141759.t001
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nestling wing length as a surrogate of age (scaled mass index was not related wing length; F1, 24
= 2.70, r = 0.32, p = 0.11). Model selection was carried out using a backward multiple regression
method in which variables were removed from the initial model when the variance explained
did not significantly improve the model (α = 0.05). Residuals from all models were normally
distributed. Statistical analyses were performed using SAS and STATISTICA software.

Results

Age and sex variation in plasma carotenoids and physiological state
We found carotenoid pigments in the plasma of all sampled individuals. The same carotenoids
were found in nestlings and adults, including xanthophylls (trans-zeaxanthin, trans-lutein, cis-
lutein and cis-zeaxanthin isomers, α-cryptoxanthin, β-cryptoxanthin, and echinenone) and one
carotene (β-carotene) at variable but inter-correlated concentrations (Table 1). Total plasma
carotenoid concentration was 41.82% higher in nestlings than in adults (Table 2). Physiological
state also showed age-related differences. The prevalence of Candida-like yeast was higher in
nestlings (72%, n = 29) than in adults (26%, n = 54, Yates corrected χ2 = 14.87, p = 0.0001).
Also, the number of lesions caused by yeast in the oral cavity was almost four times higher in
nestlings than adults (Table 2). The number of fault bars controlling for tail size was not differ-
ent between nestlings and adults (Table 2). No sexual differences in total plasma carotenoids or
in physiological state were found in nestlings (all p> 0.13) or adults (all p> 0.28).

Relationships between immunity, physiological state and plasma
carotenoids
Hemolysis differed between age classes with nestlings showing around 50% lower levels than
adults (nestlings: 2.03 ± 1.57, adults 4.33 ± 0.80; Table 3). Additionally, the effect of the interac-
tion total plasma carotenoids × age-class was significant for hemolysis (Table 3; Fig 1). When
nestlings and adults were tested independently we found that nestlings with lower carotenoid
concentrations showed higher hemolysis levels than nestlings with higher carotenoid concen-
trations (F1, 27 = 5.71, p = 0.02), while no such a relationship was found for adults (F1, 52 = 0.34,
p = 0.56). Hemolysis was unrelated to sex (p = 0.08), physiological stress (p = 0.27), pathogen
infection (p = 0.32), body mass (p = 0.12), tarsus length (p = 0.93), nestling nutritional condi-
tion (p = 0.37) or nestling age (p = 0.60).

The hemagglutination reaction was related to pathogen infection in both age classes (F1, 81
= 9.78, p = 0.002). Overall, individuals with a more severe pathogen infection showed a weaker
hemagglutination reaction than those with a lower intensity infection (Fig 2). Hemagglutina-
tion was not related to age class (nestlings: 7.12 + 1.15, adults 7.75 + 1.23; p = 0.73), the

Table 2. Age-related differences in physiological state and plasma carotenoids in nestling (n = 29) and adult (n = 54) griffon vultures. Significant dif-
ferences between age classes from univariate GLMs are shown in bold. Statistical comparison of nutritional condition between nestlings and adults was not
performed because this variable was estimated differently for each age class (scaled mass index in nestlings and body mass in adults).

Nestlings (n = 29) Adults (n = 54) Comparison

Mean SD Mean SD F df p

Physiological state

Nutritional condition (g) 7055.043 954.965 9078.704 614.668 - -

Fault bars (number) 2.000 2.843 7.430 8.702 1.212 1,76 0.274

Candida-like lesions (number) 1.621 1.613 0.480 1.041 15.221 1,81 0.0002

Total plasma carotenoids (μg/mL) 0.555 0.516 0.320 0.228 8.329 1,81 0.005

doi:10.1371/journal.pone.0141759.t002
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interaction between age class and total plasma carotenoids (p = 0.68), total plasma carotenoids
(p = 0.95), sex (p = 0.88), physiological stress (p = 0.55), body mass (p = 0.53) or tarsus length
(p = 0.28).

Discussion
Our study provides an empirical evaluation of innate immunity variability in adults and nest-
lings in relation to the natural variation of plasma carotenoids in a large long-lived vulture. We
found age-related differences in one component of the innate immunity, plasma carotenoid
concentration and pathogen infection. The main results showed that the relationship between

Table 3. Minimal adequate model showing the relationship between hemolysis reaction and total carotenoids (CAR), in nestling and adult griffon
vultures. Significant associations are shown in bold.

Hemolysis by complement

Estimate lower 95% CI upper 95% CI F1, 79 p

CAR (total plasma carotenoids) 0.2851 -0.9995 1.5698 1.72 0.1941

Age class -1.4992 -2.2736 -0.7247 14.85 0.0002

CAR x Age -1.5605 -3.0654 -0.0556 4.26 0.0423

R2 0.53

doi:10.1371/journal.pone.0141759.t003

Fig 1. Relationship between innate immunity and plasma carotenoid concentration as a function of the hemolysis reaction of complement
proteins in nestling (open circles, dotted line) and adult (solid circles, solid line) griffon vultures. Plasma carotenoids were calculated as the sum of
xanthophylls (trans-zeaxanthin, trans-lutein, cis-lutein and cis-zeaxanthin isomers, α-cryptoxanthin, β-cryptoxanthin, and echinenone) and one carotene (β-
carotene).

doi:10.1371/journal.pone.0141759.g001
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hemolysis and carotenoids was affected different in nestlings and adults: while hemolysis levels
decreased with increasing carotenoid concentration in nestlings, no such a relationship was
apparent in fully-grown vultures. Furthermore, independent of age-class and carotenoid levels,
individuals with a more severe pathogen infection showed weaker hemagglutination than those
with a lower intensity infection. As expected by the lack of sexual dimorphism in size and mor-
phology, and because no apparent sexual differences in habits, diet or pathogen infection in the
griffon vulture exist [45, 59], the found patterns were not affected by sex.

The negative relationship between hemolysis and plasma carotenoids found in nestling grif-
fon vultures suggests that complement activation diverted carotenoids from the plasma, as pre-
viously reported [11–12, 15–19]. Whether carotenoids were directly involved in the
development of the innate immune response in nestlings or indirectly involved as a conse-
quence of other physiological processes resulting in the activation of an immune response
remains to be determined. For instance, such a relationship may be explained by a) the ability
of nestlings to divert plasma carotenoids that may positively affect the magnitude of the
immune response, b) a greater mobilization of plasma carotenoids due to a strong immune
response, or c) a combination of the two mechanisms. In addition, because carotenoids are
involved in the modulation of the immune system and the detoxification of free radicals, their

Fig 2. Relationship between innate immunity (as a function of the hemagglutination reaction between natural antibodies and antigens) and
pathogen infection (F1,81 = 9.78, P = 0.002,R2 = 0.10) in griffon vultures. The increasing size of multiple markers represents 1, 2, 3, 4, 5, 6, 11 and 17
cases, respectively.

doi:10.1371/journal.pone.0141759.g002
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mobilization in plasma might reflect a rapid re-allocation to immune tissues or cells [15] and/
or short-term changes in oxidative status [18]. These two health-boosting roles may be particu-
larly true in species lacking carotenoid coloration in which no trade-off between coloration and
immunity occurs. Indeed, the low concentration of plasma carotenoids due to a diet based on
carrion poor in these micronutrients suggests that carotenoid allocation to innate immunity
may be essential to fighting pathogen infections. As the exposure to health threats (i.e., selec-
tion for immune development and vulnerability to pathogens) may vary between age classes,
we predicted age-dependent interactions between innate immunity and circulating caroten-
oids. Interestingly, the negative relationship between hemolysis and plasma carotenoids was
found only in nestlings, in which prevalence and intensity of pathogen infection was higher
than in adults, and the concentration of circulating carotenoids was almost double. These
results are consistent with the idea that different interactions between innate immunity and
plasma carotenoids occur from development in the nest to adult life as a result of different
environmental and physiological conditions. Also, our results may be explained by the fact that
adults were raised under different infection conditions that may affect adult physiological
trade-offs, raising the possibility that what we interpret as “age”may actually reflect differences
in the conditions that nestlings and adult experienced during their early development. There-
fore, an experimental approach is clearly needed to test these two possibilities.

It has been suggested that species that scavenge at carcasses are subject to strong parasitism
and therefore have robust front line immune defenses that could potentially reduce the need
for mounting relatively energetically costly lymphocyte-dependent immune responses [60].
Moreover, given the individual’s need to protect itself against pathogens, it might be expected
that some types of defenses are favored over others depending on developmental stage [61–62].
It is commonly assumed that young birds rely proportionally more on their innate immunity
while the specificity and memory of the adaptive branch fully develops [63–64]. However, con-
stitutive innate immunity has also been shown to develop slowly after hatching, and is still
immature just before fledging [33, 35, 57, 65–68]. Our data show that hemolysis in nestlings
was significantly lower than in adults, which is in agreement with the pattern of maturation of
the immune system in developing birds found in chickens (Gallus domesticus) [57], Leach's
storm-petrels (Oceanodroma leucorhoa) [65], tree swallows (Tachycineta bicolor) [33, 68],
common kestrels (Falco tinnunculus) [66], great tits (Parus major) [67] and house sparrows
(Passer domesticus) [35]. Nonetheless, in contrast to this previous work, hemagglutination in
vultures was similar between age classes. Such species-level variation in the development of
constitutive immune defenses may be explained within the context of life-history theory.
Recently, it has been proposed that “slow-living” species may exhibit stronger innate immunity
mediated by natural antibodies, while species with ‘fast’ life histories would rely more heavily
on developed complement proteins [69]. Because hemagglutination was related to pathogen
infection and nestlings were more infected than adults, we propose that griffon vultures may
allocate their resources to the development of natural antibodies at the expense of the slowed
maturation of the immunity branch related to complement proteins. In support of this idea, we
found no association between hemolysis and hemagglutination in griffon vultures, suggesting
differences in the development of the innate immunity components, or a contrasting invest-
ment of each component of the innate immune systems to fight particular pathogens or vari-
able infection intensity. Therefore, to comprehensively understand the ontogenetic
interactions between innate immunity and plasma carotenoids it may be crucial to consider the
likelihood of ongoing infection with the wide array of pathogens generally affecting a propor-
tion of individuals in wild populations at variable intensities.

Overall, plasma carotenoid concentration was 41.82% higher in nestlings than in adults, and
yet the carotenoid profile was similar between age classes and showed a predominance of
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xanthophylls (91.71% and 95.31% in nestlings and adults, respectively) in relation to carotenes
(8.28% and 4.38%, respectively). As previously reported for other species of vultures [39], the
identified plasma carotenoids can be considered dietary rather than metabolically derived, as
they are found in fresh tissues of domestic mammal herbivores except echinenone, which is
metabolically derived from β-carotene. Interestingly, the higher concentration of xanthophylls
that are scarce in flesh supports the hypothesis of the consumption of dietary vegetal supple-
ments to acquire carotenoids, either by ingesting fresh vegetation directly or indirectly via vege-
tal content of herbivore carcasses [39–40]. Remarkably, as compared to adults, the higher
carotenoid levels in nestlings may imply a diet richer in these micronutrients supplied from
vegetal matter provisioned by their parents. In addition, due to different organismal programs
across ontogeny, it may be simply a consequence of the complex interactions between caroten-
oid availability and allocation to different physiological functions other than immunity. Both
possibilities require further research.

In summary, we found that nestlings showed a weaker hemolysis reaction, higher total
carotenoid concentration and more intense pathogen infection than adults. Independent of
age-class and carotenoid levels, we found that individuals with more severe pathogen infection
showed less immunity than those with a lower intensity infection. Taken together, these results
suggest a differential carotenoid allocation to immunity due to the ongoing development of the
immune system in nestlings as compared to fully-grown individuals, yet an experimental
approach is needed to confirm such a possibility. These ontogenetic variations in the interac-
tions between immunity and carotenoids can be further linked to, or may be regardless of, dif-
ferential infection and its health consequences from nestling to adult life. The idea that
intraspecific interactions between innate immunity and carotenoids change across ontogeny,
even in species lacking carotenoid-based coloration, is supported by our data. Thus, even at
low concentrations due to a scavenger diet, plasma carotenoids may play an essential role in
the development and activation of the immune system in growing birds.
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